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EC Summary Requirements 
1. Changes with respect to the DoA 
No changes with respect to the work described in the DoA.  

 

2. Dissemination and uptake 
This deliverable aims to serve as a scientific framework for assessing integrated assessment modelling results 
throughout the PARIS REINFORCE project, in work packages WP5-WP7, against different types of uncertainty while 
looking into progress along non-climate sustainable development goals. It can also be used by policymakers and 
other stakeholders in Eastern Africa and the EU, showcasing optimal technological subsidy mixes in different 
contexts: achieving emissions cuts, along with health and access to energy co-benefits in the first case; and making 
the best of the announced COVID recovery plans in Europe, by achieving additional emissions cuts while creating 
new jobs in the energy sector and supporting the pandemic-impacted employment. 

 

3. Short summary of results (<250 words) 
As a starting point, this report establishes a multiple-uncertainty analysis framework for integrated assessment 
modelling of several Sustainable Development Goals (SDGs). It introduces a two-level integration of climate-
economy modelling and portfolio analysis, to simulate technological subsidisation with implications for multiple 
SDGs, across socioeconomic trajectories, and considering different levels of uncertainties. The framework is 
validated in a real-world case study, applied in Sub-Saharan Africa, where it builds on the GCAM model and the 
well-established AUGMECON-2 multi-objective programming algorithm, to optimise technology subsidisation 
portfolios that achieve sustainable energy use, while contributing to SDGs 3 (air pollution-related mortality), 7 
(access to clean energy), and 13 (climate change mitigation) in an uncertain future. Acknowledging the weaknesses 
of the selected multi-objective programming algorithm, the report then documents the development of a novel, 
enhanced and more robust variant of the method, AUGMECON-R, allowing to quickly resolve significantly more 
complex problems with any number of objectives. The enhanced framework is then applied on top of the first 
model inter-comparison exercise of the PARIS REINFORCE project, in line with its “where are we headed?” scenario 
logic, seeking to identify the optimal allocation of the green part of the announced recovery packages in the EU, 
with the aim to both achieve extra emissions reductions and lead to employment co-benefits in the entire energy 
sector. 

 

4. Evidence of accomplishment 
This report, the three peer-reviewed publications (in Environmental Research Letters, Environmental Modelling & 
Software, and Operational Research), and the presentation of the EU case study results in the EASME knowledge 
sharing event (November 27, 2020). 
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Preface 
PARIS REINFORCE will develop a novel, demand-driven, IAM-oriented assessment framework for effectively 
supporting the design and assessment of climate policies in the European Union as well as in other major emitters 
and selected less emitting countries, in respect to the Paris Agreement. By engaging policymakers and 
scientists/modellers, PARIS REINFORCE will create the open-access and transparent data exchange platform I2AM 
PARIS, in order to support the effective implementation of Nationally Determined Contributions, the preparation 
of future action pledges, the development of 2050 decarbonisation strategies, and the reinforcement of the 2023 
Global Stocktake. Finally, PARIS REINFORCE will introduce innovative integrative processes, in which IAMs are 
further coupled with well-established methodological frameworks, in order to improve the robustness of 
modelling outcomes against different types of uncertainties. 
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Executive Summary 
As a starting point, this report establishes a multiple-uncertainty analysis framework for integrated assessment 
modelling of several Sustainable Development Goals (SDGs). It introduces a two-level integration of climate-
economy modelling and portfolio analysis, to simulate technological subsidisation with implications for multiple 
SDGs, across socioeconomic trajectories, and considering different levels of uncertainties. The framework is 
validated in a real-world case study, applied in Sub-Saharan Africa, where it builds on the GCAM model and the 
well-established AUGMECON-2 multi-objective programming algorithm, to optimise technology subsidisation 
portfolios that achieve sustainable energy use, while contributing to SDGs 3 (air pollution-related mortality), 7 
(access to clean energy), and 13 (climate change mitigation) in an uncertain future. Acknowledging the weaknesses 
of the selected multi-objective programming algorithm, the report then documents the development of a novel, 
enhanced and more robust variant of the method, AUGMECON-R, allowing to quickly resolve significantly more 
complex problems with any number of objectives. The enhanced framework is then applied on top of the first 
model inter-comparison exercise of the PARIS REINFORCE project, in line with its “where are we headed?” scenario 
logic, seeking to identify the optimal allocation of the green part of the announced recovery packages in the EU, 
with the aim to both achieve extra emissions reductions and lead to employment co-benefits in the entire energy 
sector.  

In particular, the pandemic has had a significant impact on the European economy, with approximately 1.8 million 
EU citizens losing their jobs between September 2019 and September 2020. Towards facilitating a recovery, the 
EU launched the Recovery and Resilience Facility (RRF) to provide €672.5 billion of financial support to Member 
States in the coming years. In line with the European Green Deal and climate efforts, 37% of investments in national 
plans requesting RRF financing must focus on a “green” transition. Integrated within the first PARIS REINFORCE 
model inter-comparison scenario logic of exploring “where the world is headed” based on current policies and 
pledges, we seek the optimal allocation of renewable energy subsidies from the COVID-19 recovery package in 
the EU. Towards further mitigating emissions and creating new jobs in the green transition, on top of a current 
policies scenario, we use budgets aligned with announced plans, and couple integrated assessment modelling 
with a technological portfolio analysis. We find that, for a €100-200 billion investment budget in 2021-2025, about 
230-432k new jobs can be created by 2025 in the energy sector. The support package could also bring the EU 
(only slightly) closer to the new 2030 climate target: 50-233 MtCO2e can be cut by 2030, corresponding to a 0.2-
1% drop further down from the current policies scenario. Biofuels, wind, and biogas appear to be the most optimal 
technologies to subsidise against the two criteria, with small geothermal investments complementing portfolios. 
As solar energy already reaches high levels of penetration in a current policies scenario, additional subsidies push 
emissions higher due to increasing gas use for balancing grid load, while electric vehicles display expensive 
emissions cuts for negligible new jobs. Wind-based portfolios prioritising employment gains appear more robust 
against uncertainties; this shifts in favour of biofuels if larger investment capacity is assumed, maximising 
emissions reductions. 
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1 A multiple-uncertainty analysis framework for 
integrated assessment modelling of several sustainable 
development goals 
This section builds on the PARIS REINFORCE publication in Environmental Research Letters (Van de Ven et al., 
2019) and has been peer-reviewed and published in Environmental Modelling & Software (Forouli et al., 2020). 

1.1 Introduction 
Integrated Assessment Models (IAMs) are a core element of the scientific processes that comprise the “best 
available science” (Peters, 2016), when it comes to analysing energy system transitions within the context of climate 
change mitigation and sustainable socioeconomic development (Nikas et al., 2019; Pietzcker et al., 2017; 
Schwanitz, 2013; Janssen et al., 2009). These tools are applied to analyse adaptive energy–environment-economy 
systems in the global scientific and policy arena (Ewert et al., 2015; Gidden et al., 2018; Estrada et al., 2019), advance 
scientific understanding of the potential to combat climate change and underlying dynamics towards robust and 
sustainable development (Huppmann et al., 2019; Warren et al., 2019), and evaluate the various technologies, 
initiatives and policy options that ensure clean and sustainable energy transition (Wyrwa, 2015; Shi et al., 2017; Liu 
et al., 2019). 

In particular, these models constitute a well-established scientific tool aimed at understanding feedbacks and 
influences between different system components, including the social, economic and ecological implications of 
different natural or anthropogenic factors, especially with regard to interlinkages between the human and the 
natural system (Calvin and Bond-Lamberty, 2018; Gidden et al., 2018). The core advantage of these complex 
models is that they provide an integrated system perspective to study the dauntingly complex interactions 
between energy, economy, land use, water, and climate systems (Scott et al., 1999; Weyant, 2017). Through such 
an integration, IAMs combine multiple and diverse components across their social, organisational and conceptual 
boundaries to provide a comprehensive analysis of the problem (Collins et al., 2015; Jakeman and Letcher, 2003). 
For this purpose, different modules or components are coupled with one other, usually including but not limited 
to the economy, the environment, the energy system and the climate feedbacks or economic impacts of changes 
among them (Giupponi et al., 2013). Modelling results are widely used to, inter alia, directly influence decisions 
and taken stock of towards advising policymakers, as is the case of the assessment reports of the 
Intergovernmental Panel on Climate Change (IPCC). Recent examples of publications where IAMs contribute to 
providing background information on possible energy and climate futures, and to scientifically underpinning 
international climate policy negotiations are the IPCC’s special report on the impacts of global warming of 1.5 °C 
above pre-industrial levels (IPCC, 2018), the World Energy Outlook 2018 (International Energy Agency, 2018), or 
the European Union (EU) Energy Roadmap 2050 (EC COM, 2016). In this respect, decision makers are based on 
IAM-driven policy prescriptions to develop policies that contribute to managing environmental resources and 
assets in a way that delivers acceptable environmental and socioeconomic outcomes. More details on IAMs can 
be found in Krey (2014), Weyant (2017) and Nikas et al (2019), which review energy – economic models, including 
or focusing on IAMs, and provide a categorisation of them based on parameters like their degree of integration 
and mathematical underpinnings, as well as highlight the challenges associated with these modelling frameworks. 

Given their strengths and weaknesses (Hamilton et al., 2015), however, analyses based exclusively on these 
formalised frameworks alone are usually not sufficient to address the broad spectrum of challenges associated 
with climate change and policy assessment (Doukas et al., 2018), and recent advances and paradigms call for 
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and/or apply complementing them with other methods and tools (Turnheim et al., 2015; Geels et al., 2016). In this 
direction, IAMs have recently been coupled with a diversity of tools, towards enhancing scientific processes and 
leading to more pragmatic policy prescriptions, including but not limited to life cycle analyses (Arvesen et al., 
2018), fuzzy cognitive mapping (Nikas et al., 2020; Antosiewicz et al., 2020), and multiple criteria decision aid 
frameworks (Baležentis and Streimikiene, 2017; Shmelev and Van den Bergh, 2016). One of these tools, which has 
been established in the climate policy domain (Doukas and Nikas, 2020) in diverse applications (Allan et al., 2011; 
Bistline, 2016; Odeh et al., 2018; Zhang et al., 2018) and long been coupled with IAMs (e.g. Baker and Solak, 2011; 
Pugh et al., 2011; Forouli et al., 2019a; Forouli et al., 2019b; del Granado et al., 2019), is portfolio theory. 

In fact, energy planning decisions are often portfolio building problems, in which the task is to find a viable mix 
of actions to meet the overall objectives, targets, and constraints. Therefore, today, as many energy-related 
decisions fall into this category, portfolio decision analysis methods and tools are seen as the next step in energy 
decision support (Marinoni et al., 2011; Vilkkumaa et al., 2014). Through such tools, decision makers are able to 
consider a set of actions and create policy incorporating relevant concerns and interests in a balanced way. 
Typically, decision makers have to consider the overall performance of a portfolio across many relevant dimensions 
or criteria, such as techno-economic, socio-political and environmental impacts (Huang and Wu, 2008; Muñoz et 
al., 2009). Portfolio analysis (PA) addresses the need to consider multiple objectives and constraints, and further 
contributes to identifying promising candidate actions and examining interactions among them.  

Portfolio decision models were first applied on risk diversification in financial investments and have their roots to 
the work of Markowitz (1952). Markowitz proposed a mean-variance model to support investment decisions in 
light of uncertainty associated with the future returns of financial assets. Today, there is a range of portfolio 
modelling approaches, which offer modelling and optimisation support to find the most preferred portfolio of 
actions, and which are applicable to energy and environmental modelling. Lahtinen et al. (2017) provide a detailed, 
comparative description of portfolio modelling approaches. Among the most common ones are the value–cost 
(or benefit-cost) approach, where actions are prioritised according to the value–cost ratio until a budget cap is 
reached (Hajkowicz et al., 2008; Marinoni et al., 2011). The disadvantage of this method is that, in case of synergies 
or interactions between the actions, optimality is not guaranteed. As interactions play a critical role in energy- 
and/or climate-economy problems, this approach is often not sufficient. An approach that incorporates the risk 
parameter into the evaluation is the modern portfolio theory approach where the optimal resource allocation for 
each risk level is identified (Crowe and Parker, 2008; Paydar and Qureshi, 2012).  

From the above, we understand that PA and IAMs are widely used in policy analysis and evaluation of pathways 
for the transformation of the human and earth systems. The interconnectedness of our world is broadly 
acknowledged to require integrated rather than piecemeal approaches to resolving complex environmental issues, 
particularly in view of the increasing speed and pervasiveness of connections associated with globalisation. With 
the interaction of Sustainable Development Goals (SDGs) with climate change and action gaining increasing 
prominence at the interface of science and policy, developing computational tools and models that operate across 
academic disciplines and methodologies becomes ever more important.  

In this paper, we use a multi–objective optimisation approach where the result is a set of non–dominated 
portfolios. Through this approach, interactions among the set of actions and portfolio constraints can be 
considered. The goal is to generate non-dominated combinations of actions, in terms of comparing between the 
evaluation criteria. As required by portfolio modelling, and in order to generate the non-dominated portfolios, all 
candidate actions are simultaneously considered and optimised in the same portfolio optimisation model. The 
goal is to identify optimal portfolios of actions or a set of non-dominated portfolios that best meet multiple 
objectives while satisfying the problem constraints. Decision makers can then select a portfolio among the non-
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dominated ones, tailored to their needs and preferences. To understand the term of portfolio dominance, a 
portfolio is said to be dominated, if there exists another portfolio of actions that performs better in some attribute 
(criterion) and at least equally good in all other attributes. The model-based portfolio generation process 
proposed here supports the consideration of multiple objectives and constraints, and interactions among the 
actions, while acknowledging the vital role of uncertainty.  

In particular, the first goal of this paper is to create an efficient scientific workflow and a two-way technical 
integration of integrated assessment modelling and portfolio optimisation outcomes. To this end, at first, we 
simulate future policy under policy-relevant socioeconomic scenarios, such as the Shared Socioeconomic 
Pathways (SSPs) (O’Neill et al., 2014). The Global Change Assessment Model (GCAM) is used as the implementation 
integrated assessment model1. The outputs from each policy scenario are translated into progress parameters 
relevant to three SDGs of the United Nations’ 2030 Agenda for Sustainable Development and fed into a PA model. 
These parameters include air pollution-related mortality (SDG3), access to clean energy (SDG7) and greenhouse 
gas emissions (SDG13). The optimisation problem formulation is run for selecting the optimal combinations of 
subsidy levels for six technologies, which simultaneously maximise progress in each of the selected SDGs. This is 
the first step of IAM-PA integration.  

Moreover, acknowledging that uncertainty is widely accepted to be pervasive in any attempt to manage and 
understand environmental problems (Uusitalo et al., 2015), a robustness analysis is incorporated in the proposed 
framework. Depending on the discipline and context of application, uncertainty of data or model components can 
be interpreted in different ways, varying from measures of performance, bounds, alternative scenarios (Fuss et al., 
2012; Trachanas et al., 2018) or probability distributions (Lin and Beck, 2012). In this approach, the propagation of 
uncertainties through the integrated models involves determining the effect on the output of changes in the 
inputs and is expressed stochastically, by means of a probability distribution, and deterministically, with the use 
of scenarios. Probabilistic uncertainty is incorporated in the portfolio analysis model to find robust Pareto-optimal 
portfolios of technologies in each of SSPs. Deterministic uncertainty, referring to specific scenarios with clearly 
determined datasets (Nikas et al., 2019), is used to assess the robustness of the modelling results across different 
socioeconomic pathways and timescales (Van Groenendaal and Kleijnen, 2002). This is done primarily by using 
different SSPs, which represent epistemic uncertainty (Hanger-Kopp et al., 2019) but constitute reference single 
futures of deterministic nature, on which modelling exercises anchor to cover a broad spectrum of possible future 
socioeconomic states of the world (van Ruijven et al., 2014). The second goal of this paper is to simulate an “SSP 
robustness” scenario, by defining SSP-based uncertainty bounds as boundaries for robustness and simulate 
probabilistic uncertainty among the socioeconomic pathways. Results of the “SSP robustness” scenario are 
compared with results of the distinct socioeconomic pathways analysis.  

The second step of IAM-PA integration is achieved by feeding the PA results back to GCAM. The SSP-robust 
subsidy portfolios are re-run in the GCAM model with each SSP, to check whether portfolios that are found to be 
robust to SSP-based uncertainty are also translated to more homogeneity between the SSPs with respect to the 
portfolio’s impact on SDG progress. The identification of technological portfolios that are robust among the 
different SSPs can be helpful for stakeholders to make decisions and formulate policies that will be optimal, 
independently of the realisation of different SSPs in the future, providing a useful tool to handle SSP-based 
uncertainty.  

 
 
 
1 Τhe updated GCAM documentation website includes a specific section describing the SSP implementation 
throughout the model: https://github.com/JGCRI/gcam-doc/blob/gh-pages/ssp.md  

https://github.com/JGCRI/gcam-doc/blob/gh-pages/ssp.md
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Validation of the methodological framework, which is outlined in Figure 1, is achieved by means of a case study 
in Eastern Africa, in Section 3.  

 

Figure 1 Methodological Framework 

1.2 Methods 

1.2.1 The Global Change Assessment Model  

GCAM is a dynamic-recursive, partial equilibrium model connecting socioeconomics, energy, land use and climate 
systems, and can be used to investigate the consequences of climate change mitigation policies, including carbon 
taxes, carbon trading, regulations and accelerated deployment of energy technology (JGCRI, 2017). GCAM and its 
predecessors have been used in applications investigating future emission scenarios and energy technology 
pathways (Edmonds et al., 1994; Rao et al., 2017). GCAM is one of the four models chosen to develop the 
Representative Concentration Pathways of the IPCC’s 5th Assessment Report (Pachauri et al., 2015) and has been 
included in almost all major climate/energy assessments over the last few decades. The model covers the entire 
world, dividing it into 32 regions, and runs in 5-year time steps from 1990 to 2100, simulating future emission 
paths for 24 greenhouse gases and short-lived species, including CO2 (from fossil fuel combustion and land use 
change), CH4, N2O, NOx, SO2, BC, OC, CO and NMVOC. 

For the purposes of this study, GCAM version 4.4 is used as a base. Within this model, the case study region in the 
model (eastern Africa, see section 3.1) has been adjusted for a more informed reflection of modern, real-world 
conditions (Van de Ven et al., 2019). In particular, urban energy demand has been separated from rural energy 
demand (Yu et al., 2014); and specific residential energy demands, such as cooking, lighting, refrigeration and TVs, 
separated from other residential energy uses. Especially demand for cooking has been modelled in more detail, 
improving realistic projections into future cooking energy use, and its impacts on indoor and outdoor air quality. 
These impacts on air quality are quantified by measuring the premature deaths that air pollution (both indoor and 
outdoor) is projected to cause in future scenarios. Indoor mortality is estimated by extrapolating a historical causal 
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relationship between indoor PM2.5 and mortality measured by the Global Burden of Disease (Forouzanfar et al, 
2016). Outdoor mortality is measured through the air quality model TM5-FASST (Van Dingenen et al., 2018). 
Furthermore, additional costs have been added to the provision of centrally generated electricity to rural areas, 
representing the required extensions in transmission and distribution networks, while mini-grids have been added 
as an alternative for rural energy demand. This novelty allows for projecting more realistic future scenarios in terms 
of household energy access, which has been measured on a household level using the “Tier framework” (World 
Bank, 2015). See Van de Ven et al (2019) for all details on how GCAM outputs are translated to SDG progress 
indicators. 

The inputs used to run the GCAM model and the outputs retrieved to be utilised as input in the portfolio analysis 
(PA) model are presented in Figure 2. Inputs to GCAM include socioeconomic data for different SSPs, such as 
population, gross domestic product (GDP), rate of urbanisation, energy demand, food demand, household 
discount rates, agricultural yields, energy resource productivity and emission factors. Outputs, to be used in the 
PA model, include energy access tier changes, avoided premature deaths and GHG emission reductions as a result 
of different subsidy levels for a number of sustainable technologies, per SSP and time point (2020, 2030 and 2040). 
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Figure 2 GCAM - PA model integration (inputs and outputs) 
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1.2.2 Multi-objective optimisation and portfolio analysis 

Multi-objective optimisation refers to the simultaneous optimisation (i.e. minimisation or maximisation) of 
multiple, usually conflicting, objective functions. Once such a problem is posed, it is of the practitioner’s interest 
to obtain/approximate and view the set of all trade-off, or compromise, solutions of the problem. The set of trade-
off solutions is referred to, in the current article, as the Pareto front of the problem. As environmental problems 
are driven by multiple objectives and criteria, a single optimal solution very rarely exists. Rather, a Pareto set of 
solutions can be identified, within which no single solution is strictly better than any other and a trade-off is 
required between the competing objectives. 

If the variables of a multi-objective optimisation problem take values from a continuous set, then we refer to that 
problem as a multi-objective continuous optimisation problem. On the other hand, if the variables take values 
from a set of integers, then the problem is referred to as a multi-objective integer programming (MOIP) problem. 
In this paper we model and solve a MOIP problem.  

The most widely used methods concerning the identification of Pareto optimal solutions are the weighting and ε-
constraint methods. Especially in cases of integer programming the ε-constraint method has better performance 
and certain advantages over the weighting generation methods (Steuer, 1989). In the principle of the ε-constraint 
method lies the optimisation of one of the objective functions (𝑝𝑝) using the other objective functions (𝑝𝑝 –  1) as 
constraints. Only portfolios that are non-dominated (i.e. when none of the objective functions can be improved in 
performance without degrading one or more of the other objective function values) can be considered as 
portfolios that represent the optimal trade-off between objectives. For the purpose of identifying the non-
dominated, or ‘Pareto-optimal’ solutions to the mathematical optimisation formulation, here the use of an 
extension of the ε-constraint method, namely the augmented ε-constraint (AUGMECON 2) (Mavrotas and Florios, 
2013) algorithm is suggested. The AUGMECON 2 method guarantees the generation of all Pareto optimal 
solutions, while avoiding the generation of other, non-optimal solutions. The AUGMECON 2 method can deal with 
multiple objectives simultaneously and has been successful in recent optimisation studies in a variety of fields 
concerning municipal solid waste management (Mavrotas et al., 2013), energy efficiency policies evaluation 
(Forouli et al., 2019b), power generation technology portfolio optimisation (Forouli et al., 2019a), equity portfolio 
construction and selection (Xidonas et al., 2010), biopharmaceutical processes (Vieira et al., 2017), surface 
mounting devices machines component allocation (Torabi et al., 2013), etc.  

In the AUGMECON 2 method the problem to be solved is of the following form:  

max (𝑓𝑓1(𝑥𝑥) + 𝑒𝑒𝑝𝑝𝑒𝑒 ∗ �
𝑆𝑆2
𝑟𝑟2

+ 10−1 ∗
𝑆𝑆3
𝑟𝑟3

+ ⋯+ 10−(𝑝𝑝−2) ∗
𝑆𝑆𝑝𝑝
𝑟𝑟𝑝𝑝
�) 

with the following constraints:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡: 

𝑿𝑿 ∈ 𝐹𝐹 

𝑓𝑓𝑘𝑘(𝑿𝑿) − 𝑆𝑆𝑘𝑘 = 𝑒𝑒𝑘𝑘, 𝑘𝑘 = 2. . 𝑝𝑝 

where 

𝑓𝑓𝑘𝑘(𝑿𝑿) is the objective function to be maximised 

𝐹𝐹 is the feasible region 

𝑒𝑒𝑝𝑝𝑒𝑒 ∈ [10−6, 10−3] 

𝑒𝑒𝑘𝑘 is the right-hand side of the corresponding constraint for the objective function 𝑘𝑘.  
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𝑟𝑟𝑘𝑘 is the range of the objective function 𝑘𝑘. 

𝑆𝑆𝑘𝑘 is a surplus variable for objective function 𝑘𝑘. 

The optimisation process is driven by the parametrical variation in the right-hand side of the constrained objective 
functions (𝑒𝑒𝑘𝑘). 

At first, the range 𝑟𝑟𝑘𝑘  of objective functions 2. . 𝑝𝑝 that will be used as constraints is calculated, from the payoff table 
(the table with the results from the individual optimisation of the 𝑝𝑝 objective functions). The AUGMECON 2 method 
proposes the use of lexicographic optimisation for every objective function in order to construct the payoff table 
with only Pareto optimal solutions.  

The range of the 𝑘𝑘 − 𝑆𝑆ℎ objective function is divided to 𝑔𝑔𝑘𝑘 intervals using 𝑔𝑔𝑘𝑘 − 1 intermediate equidistant grid 
points. Thus, we have in total 𝑔𝑔𝑘𝑘 + 1 grid points that are used to vary parametrically the right-hand side (𝑒𝑒𝑘𝑘) of the 
𝑘𝑘th objective function. The step for the variation of 𝑒𝑒𝑘𝑘 for objective function 𝑘𝑘 will be:  

𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝𝑘𝑘 =
𝑟𝑟𝑘𝑘
𝑔𝑔𝑘𝑘

 

And the right-hand side of the corresponding constraint in the 𝑖𝑖th iteration for objective function 𝑘𝑘 will be:  

𝑒𝑒𝑘𝑘 = 𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑘𝑘 + 𝑖𝑖𝑘𝑘 ∗ 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝𝑘𝑘  

𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑘𝑘 is the minimum from the payoff table of objective function  𝑘𝑘  

The optimisation process is solved iteratively for the different 𝑒𝑒𝑘𝑘, which correspond to the different grid points, 
and so the number of runs are (𝑔𝑔2 + 1) ∗ (𝑔𝑔3 + 1) ∗ … ∗ �𝑔𝑔𝑝𝑝 + 1�. Supposing we first begin to optimise by adding 
𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝2 to  𝑒𝑒2. In each iteration we compare the surplus variable (𝑆𝑆2) of objective function 𝑓𝑓2 that corresponds to the 
innermost objective function (i.e. the first of the 𝑝𝑝 objective functions from which we begin) with 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝2. When the 
surplus variable 𝑆𝑆2 is larger than 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝2, it is implied that in the next iteration the same solution will be obtained 
with the only difference being the surplus variable, which will now have the value 𝑆𝑆2 − 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝2 . This makes the 
iteration redundant and therefore we can bypass it as no new Pareto optimal solution is generated. We then 
calculate the new 𝑒𝑒2′  by moving forward by 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝2 , until all grid points of 𝑓𝑓2 are either assessed or bypassed. Then 
we repeat the same procedure by varying the right-hand side of 𝑓𝑓3, namely  𝑒𝑒3, and the iterations are repeated for 
the 𝑝𝑝 objecting functions. Following the above calculation procedure, we obtain the exact Pareto set of optimal 
solutions.  

For a more in-depth description on finding the exact pareto set in multi-objective integer programming problems 
with the use of the augmented ε-constraint, the reader is referred to (Mavrotas and Florios, 2013). The portfolio 
optimisation problem is solved in the General Algebraic Modelling System (GAMS). The portfolio analysis 
parameters coming from GCAM (Section 2.1) include the three parameters relevant to progress across three 
different SDGs: energy access tier change, GHG emission cuts, and avoided premature deaths due to air pollution 
(Figure 2). 

1.2.3 A cross-scenario framework 

To understand the impact of technology subsidies, the GCAM modelling exercise considers subsidies for different 
energy technology packages, in combination with three different socioeconomic pathways. In the context of the 
region of the case study focus, i.e. Eastern Africa, SSPs 3 and 5 can be seen as extreme scenarios of respectively 
low and high development and are expected to represent the margins of uncertainty for policy implementation, 
drawing from both the narratives associated with the SSP framework (O’Neill et al., 2017) and the GCAM outputs. 
In a few situations, however, the average conditions as represented in SSP 2, which reflects a possible future 
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following historic patterns, translate to the highest (or lowest, depending on the technology) cost-effectiveness of 
technological subsidisation. Results for SSP 1 (‘Sustainability’) and SSP 4 (‘Inequality’) are assumed to lie in most 
cases within the margins of the three modelled SSPs, and therefore neither of these two scenarios have been 
modelled explicitly. The optimisation portfolio analysis problem (Figure 3) is thus run separately for each of the 
three SSPs (2, 3, and 5).  

 

 
 

Figure 3 The PA optimisation problem formulation 
 
We identify three evaluation criteria or objectives to optimise and thus we formulate a tri-objective optimisation 
problem. The evaluation criteria include the maximisation of GHG emission reductions, the maximisation of energy 
access tier improvement, and the maximisation of avoided premature deaths; corresponding to SDG13 (‘climate 
action’), SDG7 (‘affordable and clean energy’), and SDG 3 (‘good health and well-being’), respectively. The three 
different time points are reflected as differences in the values of the portfolio analysis input data. Last but not 
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least, the model considers a subsidy budget constraint in order to ensure that the overall cost of the approved 
applications does not exceed a predefined value. Ultimately, nine portfolio optimisation problems are solved: three 
for each of the different timescales (2020, 2030 and 2040), for each of the three SSPs (SSP2, SSP3 and SPP5). 

1.2.4 Stochastic uncertainty analysis 

The proposed approach examines the effects of both deterministic and stochastic (non–deterministic) uncertainty 
in order to effectively assess the robustness of the resulting optimal portfolios. Deterministic uncertainty is 
expressed by means of the above-described scenario analysis: we consider different scenarios in terms of 
technology performance in each of the three time frames but, more importantly, the optimality of solutions is 
stress-tested across the three socioeconomic scenarios. Regarding stochastic uncertainty, which is inherent in 
these parameters, this is incorporated into the model by running a Monte Carlo simulation. The uncertain model 
parameters, namely the performance of the assumed technologies in terms of maximising emission reductions, 
energy access and health benefits, are treated as of stochastic nature, by sampling their values using a uniform 
distribution. At first, we run the model using deterministic values for all the uncertain parameters and the “no 
uncertainty” Pareto front is determined. Then, Monte Carlo simulation is performed iteratively to sample random 
values for the uncertain parameters from the uniform distributions, and the model is solved to generate the set of 
Pareto-optimal portfolios. Eventually, the execution of multiple Monte Carlo iterations results in many 
differentiated Pareto fronts, which are analysed to draw conclusions over the robustness of the portfolios shaping 
the Pareto front when no uncertainty is considered. We perform 1,000 Monte Carlo iterations. 

As discussed above, the GCAM model is run for the three SSP scenarios separately for every subsidy level. The 
SSPs are seen here as an uncertain set of conditions that affect the performance of every technological subsidy 
policy. For the three major optimisation problems run to identify the optimal portfolios separately for each of the 
three considered SSPs, the mean value for the uniform distributions is set equal to the estimated values as 
obtained from the runs of the GCAM model, and the deviation of the Monte Carlo iterations is set equal to ± 5%, 
as in Forouli et al. (2019a).  

1.2.5 A validation framework 

In order to perform a robustness analysis on the modelling results of the individual SSPs, we introduce the “SSP 
robustness” scenario. The “SSP robustness” scenario is not run in the GCAM model as a new scenario, and there 
is no intention to introduce a new scenario to “replace” or simulate any of the SSPs. As already mentioned, GCAM 
is run for the individual SSPs and generates results per SSP, regarding the impact of each technology subsidisation 
option on the three parameters: energy access change, GHG emissions reductions, and avoided deaths associated 
to air pollution. This impact is different per SSP. Our purpose is to define robust subsidy portfolios regardless of 
what SSP our world will resemble in the future. The “SSP robustness” scenario uses the mid-point of the SSP 
scenario outcomes on the cost effectiveness for progress along these parameters corresponding to the three SDGs 
and uses the range along the three SSP outcomes to perform a robustness analysis. Uncertainty over which SSP is 
expected to be realised in the future is therefore incorporated in the portfolio analysis, as a range for the cost-
effectiveness of the technologies in achieving progress to each of the SDGs (Van de Ven et al., 2019). In this way, 
the range of the GCAM SSP simulation outcomes, which are different for each technology, define the ranges of 
the uniform distribution, which is used for Monte Carlo simulation. Uncertainty ranges differ among the considered 
technologies: the higher the range of the SSP outcomes is, the broader the range of uncertainty in the uniform 
distribution is considered. A portfolio analysis problem, in which technologies with narrow uncertainty boundaries 
are optimised, is thus expected to be more robust among the different SSPs, compared to one with a larger 
uncertainty range, depicting higher vulnerability to the SSP simulation outcomes. To better clarify this, in the 
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extreme scenario where the resulting performance of a technology is identical among the different SSPs, portfolios 
resulting from the optimisation will be completely robust, when uncertainty is examined in terms of different SSP 
realisation. The ranges of the uniform distributions (SSP-based uncertainty boundaries) and an example of 
calculating the SSP-based uncertainty boundaries based on the mid-point of the performances across the three 
SSPs are presented in Tables 1-2.  
 
Table 1 Uncertainty boundaries (ranges of the uniform distribution) for a timepoint. 

Uncertainty boundaries (ranges of the uniform distribution) 
Technology Indicator #1 Indicator #2 Indicator #3 
Technology #1 [0.99,1.01] [0.98,1.02] [0.98,1.02] 
Technology #2 [0.98, 1.02] [0.99, 1.01] [0.95, 1.05] 
Technology #3 [0.98, 1.02] [0.99, 1.01] [0.89, 1.11] 
Technology #4 [0.89, 1.11] [0.90, 1.10] [0.90, 1.10] 
Technology #5 [0.97, 1.03] [0.96, 1.04] [0.91, 1.09] 
Technology #6 [0.72, 1.28] [0.61, 1.39] [0.93, 1.07] 

 
Table 2 Example of SSP-based uncertainty boundaries for robustness (technology #1) for 2020. Each row 
represents a different subsidy level 

Mid-point of the performances 
across three SSPs 

Range of performances across the 
three SSPs 

% Range of performances across the 
three SSPs 

Indicator 
#1 

Indicator 
#2 

Indicator 
#3 

Indicator 
#1 

Indicator 
#2 

Indicator 
#3 

Indicator 
#1 

Indicator 
#2 

Indicator 
#3 

0.000439 62.9566 0.17109 4.2E-06 0.436791 0.001689 0.96% 0.69% 0.99% 
0.003189 455.108 1.24059 2.25E-05 2.955247 0.016963 0.71% 0.65% 1.37% 
0.00579 825.195 2.25515 3.66E-05 12.78863 0.033728 0.63% 1.55% 1.50% 
0.161016 23751.5 59.9151 0.00087 746.8392 1.943537 0.54% 3.14% 3.24% 
 
Uncertainty boundaries (ranges of the uniform distribution) = distance 
from avg. of the % Range of performances across the 3 SSPs 

 
 
[0.99,1.01] 

 
 
[0.98,1.02] 

 
 
[0.98,1.02] 

 
In order to verify if the robustness of SSP uncertainty bounds leads to more robust solutions among the different 
SSPs, optimal portfolios of the “SSP robustness” scenario differing in their robustness score are selected and 
reiterated in the GCAM model. The reiteration is applied across the three different SSPs. New results on the 
contribution of the technologies to each of the SDGs are retrieved and the goal is to test whether the results of a 
more robust portfolio are indeed more homogeneous between the different SSPs compared to a less robust one. 
This is quantified by measuring the ranges of performances across the three SDGs, among the SSPs, and verifying 
that they are smaller in case of a more robust portfolio. 

To summarise the information flow into, between and out of the two models (Figure 2), the GCAM model is initially 
fed with socioeconomic data from three SSPs and its outputs are used to calculate avoided premature mortality 
due to air pollution, GHG emissions cuts and energy access levels associated with different subsidisation levels for 
a number of sustainable technologies. The latter, along with a given total budget, are fed into the PA model, which 
calculates the most robust near-optimal technology subsidisation portfolios for three timescales (2020, 2030 and 
2040) per SSP, carrying out Monte Carlo analysis within a ±5% uncertainty range for each of the three SDG-
relevant parameters. At the same time, an additional subsidy dataset is developed, based on the midpoint of the 
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extreme GCAM-resulting outcomes in terms of cost-effectiveness of technology subsidies for SDG progress 
(separately for each technology and SDG impact); Monte Carlo analysis for this extra scenario is performed in a 
different uncertainty range that is defined by the extreme values of each parameter for each subsidy level and 
technology. Finally, optimal subsidy levels for each technology, from selected portfolios of this scenario of various 
robustness scores, are fed back into GCAM, in order to validate whether portfolios with higher robustness scores 
are indeed more robust to the impact of SSP-related modelling inputs on outputs in terms of the cost-
effectiveness of SDG progress. 

1.3 Validation and Discussion 

1.3.1 Context of the case study 

Three different SSP datasets (O’Neill et al., 2014) have been modelled in GCAM for the purposes of a case study 
focusing on twelve Eastern African countries (Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, 
Rwanda, Somalia, Sudan, South-Sudan and Uganda), aggregated and assessed as one region. These datasets 
include SSP 2 (‘Middle of the Road’), SSP 3 (‘Regional Rivalry’) and SSP 5 (‘Fossil-fuelled Development’). Specifically, 
the GCAM inputs that have been adapted to each of these SSPs are (global) population, GDP, rate of urbanisation, 
energy and food demand, household discount rates, agricultural yields, energy resource productivity, and emission 
factors2 (Riahi et al., 2017). Table 3 shows the assumed evolution from 2010 to 2040 of the SSP inputs, regionally 
for Eastern Africa, that have most influence on the GCAM outputs: population, GDP and urbanisation. 
 
Table 3 Evolution of key SSP parameters in GCAM 

 2010 2020 2030 2040  2010 2020 2030 2040  2010 2020 2030 2040 

 
Population 
(Million inhabitants)  
(Samir and Lutz, 2017) 

 
GDP per capita 
($(2015) annually) 
(Dellink et al., 2017) 

 
Urban population share (%) 
 
(Jiang and O’Neill, 2017) 

SSP2 259 327 399 468  732 965 1438 2173  22.9 27.7 32.6 37.7 
SSP3 259 335 425 521  732 951 1248 1547  22.9 24.8 26.7 28.4 
SSP5 259 319 373 419  732 980 1833 3893  22.9 31.0 40.0 49.2 

 
The candidate actions are six technological subsidisation pathways revolving around liquefied petroleum gas 
(LPG), photovoltaics (PV), biogas, ethanol, charcoal and fuelwood, i.e. technologies likely to be adopted in the 
twelve developing countries of Eastern Africa (based on their action pledges, as reflected in their Nationally 
Determined Contributions), while contributing to the three predefined SDGs. The GCAM-generated parameters 
for the three SDGs showcase the contribution of each technology pathway to each of the objective functions under 
twenty subsidy levels. For each of the four major optimisation problems different time frames are applied and 
results for the years 2020, 2030 and 2040 are extracted. 

The budget constraint starts from $3.5 billion (USD at 2015 values) in 2020 and increases by 5% per year until 
2030 and 2040. 

 
 
 
2 https://github.com/JGCRI/gcam-doc/blob/gh-pages/ssp.md 
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1.3.2 Cost-effectiveness of technology subsidies and SDG progress 

The first step in the proposed methodological framework is to simulate future socioeconomic scenarios through 
the GCAM model and translate outputs from each policy scenario into progress parameters relevant to SDGs. This 
is done by applying six different pathways of technology subsidies, up to 2040, and then measuring the impact of 
these subsidies on progress towards each of the three SDGs. 

Results on the cost-effectiveness of technology subsidies for SDG progress (Figures 4-6 ) show that subsidies for 
biogas systems are the most cost-effective for each of the indicators, scenarios and years. On the contrary, 
subsidies for fuelwood pathways are only reasonably cost-effective in the short-term. For charcoal pathways, we 
observe that cost effectiveness is highly dependent on the invested subsidies. When examining progress on the 
different timescales we see that more subsidies are required for achieving the same impact in the long-term, at 
least for energy access and premature mortality indicators. In addition, in the medium- and long-term, 
technologies like fuelwood, charcoal and ethanol show an even negative impact for the examined subsidies. 
Between the different SSPs, cost-effectiveness remains in the same levels for each technology, with some 
differences observed in the short-term for biogas and the GHG emissions indicator, as well as on charcoal for 
reducing GHG emissions in the medium- and long-term. Overall, more subsidies are required to achieve a positive 
impact in the three SDGs when SSP 5 is realised. Generally, we notice that depending on the scenario and the 
point in time, some technology pathways are more cost-effective than others for a specific SDG and some result 
in negative outcomes (and thus not incorporated in Figures 4-6). Thus, the need to identify technological portfolios 
that are both Pareto-optimal in terms of contributing simultaneously to the three SDGs and, most importantly, 
robust among the different scenarios is more than prominent.   
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Figure 4 Impact of energy technology subsidies in terms of energy access levels for the different 
SSPs by 2020, 2030 and 2040.  
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Figure 5 Impact of energy technology subsidies in terms of GHG emissions for the different SSPs 
by 2020, 2030 and 2040.  
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Figure 6 Impact of energy technology subsidies in terms of mortality for the different SSPs, by 
2020, 2030 and 2040.  

 

1.3.3 Robust subsidy portfolios in each individual SSP  

The second goal of this research is to identify optimal technology portfolios that are robust in each of the different 
socioeconomic pathways, when probabilistic uncertainty in the model parameters is imposed. The results of the 
portfolio optimisation, incorporating the robustness information produced by the Monte Carlo runs, are shown 
per policy scenario in Figures 7-9, where we can see the set of solutions that represent the best possible trade-
offs between the three SDGs. A comparison of results among the different SSPs can be easily retrieved. In each 
figure, differences on technological performance among the SSPs are mainly observed in SSP 5 for the years 2030 
and 2040. In more detail, SSP 2 can prove more progress-friendly in achieving the three SDGs in the short-term, 
among all different socioeconomic pathways. In the medium- and long-term, SSP 3 leads to better results for the 
energy access and health criteria, while for the goal of reducing emissions, SSP 2 performs better. SSP 5 features 
the lowest contribution to the optimisation objectives for all considered time scales, which is fairly consistent with 
its intended narrative. SSP5 is characterised by higher incomes and urbanisation, which increase access to high-
quality energy sources, such as LPG, even without subsidisation. Due to this more “positive” counterfactual, 
technology subsidisation in SSP5 is found less cost-effective. The reasoning on how policy implications affect the 
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adoption of technologies can be found in Van de Ven et al. (2019). 
 

 
 

Figure 7 Technology subsidy portfolios that are Pareto-optimal in terms of simultaneously 
avoiding GHG emissions, premature deaths and improving energy access per SSP in 2020. Size of 

dots illustrates robustness against stochastic uncertainty of modelling parameters.  
 

 
 

Figure 8 Technology subsidy portfolios that are Pareto-optimal in terms of simultaneously 
avoiding GHG emissions, premature deaths and improving energy access per SSP in 2030. Size of 

dots illustrates robustness against stochastic uncertainty of modelling parameters.  
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Figure 9 Technology subsidy portfolios that are Pareto-optimal in terms of simultaneously 
avoiding GHG emissions, premature deaths and improving energy access per SSP in 2040. Size of 

dots illustrates robustness against stochastic uncertainty of modelling parameters.  
 

1.3.4 Robust subsidy portfolios across all three SSPs  

In this section the goal is to define robust subsidy portfolios for any of the three SSPs (2, 3 and 5). To evaluate the 
robustness of the results, an analysis that applies the ranges of the GCAM simulation outcomes between SSPs as 
its boundaries for robustness is introduced and carried out. Figure 10 illustrates the Pareto fronts of the optimal 
solutions, while giving information on the robustness of the results, which is represented by the size of dots: the 
bigger the dots, the higher the robustness.   
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Figure 10 Technology subsidy portfolios that are Pareto-optimal in terms of simultaneously 
avoiding GHG emissions, premature deaths and improving energy access in 2020, 2030 and 2040. 

Size of dots illustrates robustness against SSP uncertainty. 
 
The behaviour of the optimal solutions across the different timescales shows homogeneity with the analysis 
provided for the different SSPs. What is important is to additionally verify if the robustness of SSP uncertainty 
bounds leads to more robust solutions among the different SSPs. To achieve that, we select two optimal portfolios 
for each of the six Pareto curves of Figure 10, one with a higher robustness score and one with a lower robustness 
score. The robustness score indicates the number of Monte Carlo iterations within which a portfolio remains 
optimal. We re-iterate these portfolios in the GCAM model to test whether the results of a more robust portfolio 
are indeed more homogeneous between the different SSPs, i.e. that the ranges of SDG performances across the 
SSPs are smaller in case of a more robust portfolio. The results shown in Table 4 suggest that in the majority of 
the scenarios we can confirm a smaller output range between SSPs, if a portfolio with a higher robustness score 
is chosen. The range in outcomes decreases by up to 16% for the baseline scenario in 2020.  
 
Table 4 Decrease in GCAM output ranges between SSPs for each of the three SDGs when selecting a 
portfolio of higher robustness score. 

 Decrease in output ranges between SSPs 
 GHG Emissions Mortality Energy Access 
Baseline 2020 -1% -4% -16% 
Baseline 2030 -4% 1% -1% 
Baseline 2040 2% -1% -11% 

 

1.3.5 Empirical findings, discussion and results 

Table 5 shows how the realisation of the different SSPs affects the total impact and contributions per technology 
for the most robust Pareto-optimal subsidy portfolios. The robustness of the optimisation process is examined for 
each of the SSPs separately, assuming that the performance of the assumed technologies in terms of maximising 
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emission reductions, energy access and health benefits is stochastically uncertain. 

Consistent with the analysis on the cost-effectiveness of the technology subsidies, biogas is the technology with 
the higher participation in the robust portfolios. This is evident across the different SSPs and timescales. The use 
of LPG and PV systems also have a high contribution to progress in the three SDGs. Charcoal kilns, and ethanol 
technologies reach their maximum potential, which though corresponds to a much lower subsidy and impact level 
compared to LPG, PV and biogas. Fuelwood is the least attractive technology. The policy context on how the 
different policy scenarios affect subsidisation and effectiveness of the technologies is provided in Van de Ven et 
al. (2019). Here the SSPs are assumed as an uncertain set of conditions that affect the performance of every 
technological subsidy policy and we focus on how the realisation of the different SSPs will ultimately affect the 
participation of technologies in the robust portfolios.  

For the year 2020, technologies show a stable share of participation in the robust portfolios. In 2030, a high 
increase in the contribution of ethanol is observed for SSP 5, where ethanol is subsidised up to 11%, in contrast 
to SSPs 2 and 3 where subsidisation for ethanol is less than 2%. The realisation of different SSPs has an overall 
bigger effect on SDG progress in 2040.  

 
Table 5 Ranges of total impact and contributions per technology for the most robust Pareto optimal 
subsidy portfolios across SSPs  

SC Technology Energy Access GHG Mortality Subsidy 

20
20

  

LPG 20-23% 28-34% 15-18% 34-40% 
PV 16-21% 7-8% 3-4% 8-10% 

Biogas 49-53% 50-52% 73-75% 42% 
Charcoal 1-8% 2% 2% 3% 

Fuelwood 0.02-0.2% 0.10% 0% 1% 
Ethanol 3-10% 5-14% 2-7% 4-13% 

20
30

  

LPG 10-14% 10-15% 7-10% 13-22% 
PV 18-28% 9-13% 5-7% 18-23% 

Biogas 58-62% 70-72% 78-81% 56% 
Charcoal 1% 1% 1-2% 2-3% 
Ethanol 1-11% 2-10% 1-8% 2-11% 

20
40

  LPG 35-42% 29-51% 24-31% 48-57% 
PV 7-26% 6-20% 3-10% 8-21% 

Biogas 33-55% 29-65% 60-73% 22-43% 
Charcoal 0.00% 0.10% 0% 0% 

 

1.4 Conclusions 
This research presents a two-level integration of an integrated assessment model, namely GCAM, and a portfolio 
analysis model, based on AUGMECON 2 and Monte Carlo simulations, with the aim to provide policymakers with 
a comprehensive tool to address environmental and energy-related issues, facilitating the exchange of input data 
and model results across different methodologies. The integration is applied to a case study focusing on 
technological portfolio optimisation among different plausible socioeconomic futures in Eastern Africa. Initially, 
the GCAM model is run to simulate future socioeconomic scenarios for six relatively sustainable technologies. 
Outputs from each scenario are translated into progress parameters relevant to SDGs and are fed into a PA model. 
The portfolio optimisation model leads to the identification of Pareto fronts of optimal portfolios and allows 
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comparison among different SSPs. The results show how resource allocation must be shared among the 
technologies to achieve optimal trade-offs on the simultaneous achievement of three goals: increase of energy 
access (SDG7), reduced exposure to air pollution and avoidance of related mortality (SDG3) and mitigation of 
global warming (SDG13). Biogas is the technology with the higher participation in the robust portfolios, across all 
SSPs and timescales, while fuelwood is the least attractive technology. A comparison between the SSPs shows that 
differences in the technological performances among the SSPs are mainly observed in SSP 5 for the years 2030 
and 2040.  

In order to hedge uncertainty concerning the realisation of different SSPs, an analysis that applies the ranges of 
the GCAM simulation outcomes between SSPs as its boundaries for robustness is introduced. The second link 
between the PA and GCAM models is achieved by feeding the GCAM model with the results of the portfolio 
optimisation analysis, to verify if the robustness of SSP uncertainty boundaries leads to more robust solutions 
across the different SSPs. We selected for each Pareto front a portfolio of high robustness and a portfolio with 
lower robustness score and reiterated these portfolios in the GCAM model to retrieve results for the technologies’ 
impact for each SSP. This is to test whether the resulting ranges of SDG performances between the SSPs are smaller 
in case of a more SSP-robust portfolio. The results confirm that all portfolios show a smaller output range between 
SSPs, if a portfolio with a higher robustness score is chosen, showcasing the advantage of the proposed 
methodology. 

A limitation of our proposed methodology related to the “SSP robustness” scenario lies on the initial choice of the 
mid-point between the range of SSP results in terms of the impact of each technology on SDG progress, for 
identifying the Pareto front of the optimal portfolio. The proposed idea is not to imply that the SSPs have the 
same probability of occurrence, as no rational assessment of probabilities of various representative scenarios can 
conclude equal likelihood (Kinzig and Starrett, 2003) hence justifying the use of a mean value; but rather to assess 
the uncertainty of the results across the entire spectrum of the resulting values, as defined by the individual SSP 
results. Even though we do apply the full SSP-related uncertainty range when calculating the robustness of the 
individual portfolios on the Pareto front, it could be that the election of a different point within the SSP outcome 
range would yield a slightly different Pareto front, and hence alter the portfolio outcome. However, we think that 
the difficulty to select a justifiable “mid-value” within an SSP-related outcome range poses a limitation that is a 
necessary evil, which enables the stochastic identification of optimal technology portfolios against all, or most, 
potential outcomes (Grübler and Nakicenovic, 2001) of technological subsidisation, regardless of our capacity to 
envisage a future world state that leads to these outcomes, and especially since these outcomes are forecasts of 
a single model (Allen, 2003).  

Nevertheless, acknowledging this limitation and understanding the knowledge gaps reflected in this broad 
spectrum, against which the resulting technological subsidisation portfolios are assessed, may allow science both 
to reduce uncertainties in a systematic manner and to convey to policymakers the need to manage and integrate 
uncertainty into the policymaking process (Schneider, 2003). Along those lines, it is also important to note, that 
although the policy assumptions of the paper are carefully selected based on published research (Van de Ven et 
al., 2019), policy-relevance of results is highly dependent on the assumptions applied when modelling the policy 
scenarios, and these must be carefully considered when interpreting the results. Without overlooking this 
limitation, the novel methodology introduced in this research can be useful for stakeholders to manage the 
uncertainty prominent in the future states of the world, according to different adaptation and mitigation 
challenges. Both core elements of the methodology, namely the GCAM model and the portfolio analysis model 
can be extended to include more parameters (i.e. technologies) than the ones represented in the current 
application. However, we must consider the limitations in terms of time and processing requirements, that the 
solution of more complex problems i.e. of numerous objective functions, more Monte Carlo simulations may 
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require; this limitation can in the future be overcome, by using an enhanced algorithm for solving the portfolio 
analysis model, like AUGMECON-R, which is a more advanced version of AUGMECON 2 with significantly faster 
resolution performance (Nikas et al., 2020). Further prospects towards enriching the proposed methodological 
framework include the selection of variables with implications for a broader set of SDGs, and the integration of 
the models with participatory tools, to actively involve stakeholders in the case study; participation of stakeholders 
in policy analysis has been found to improve system understanding and scoping risks associated with climate 
policy and technologies (van Vliet et al., 2020). 
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2 A robust augmented ε-constraint method 
(AUGMECON-R) for finding exact solutions of multi-
objective linear programming problems 
This section has been peer-reviewed and published in Operational Research (Nikas et al., 2020). 

2.1 Introduction 
Despite rapid technological advancements in software and hardware performance, many problems featuring 
numerous evaluation criteria or objective functions (Wiedemann, 1978), multiple constraints of different nature 
and hundreds to thousands of decision variables remain challenging to solve (Carrizosa et al., 2019). Several 
methods have been developed to solve multi-objective linear programming problems, each of which features 
strengths and weaknesses (Sylva and Crema, 2007). Among these, the ε-constraint method, along with its variants, 
has been used in many systems and applications (e.g. Liu and Papageorgiou, 2013; Paul et al., 2017; Zhou et al., 
2018; Jenkins et al., 2019), reported as a powerful way to solve multi-objective linear programming problems and 
preferred over competing techniques (Kadziński et al., 2017; Jabbarzadeh et al., 2019). 

In this study, we focus on one of the most widely used improvements of ε-constraint, the AUGMECON method 
(Mavrotas, 2009) as subsequently improved in AUGMECON 2 (Mavrotas and Florios, 2013). By looking at its main 
novelties, its core weaknesses are identified and discussed in detail, serving as a motivation for developing a new 
model that effectively overcomes them. These weaknesses, although dependent on various characteristics and 
processes of the method, can be summarised in the ineffective handling of the true nadir points of the objective 
functions of a problem and, most notably, in the significant amount of time required to apply it as more objective 
functions are added to a problem, which can even make a problem practically insolvable. Drawing on these, we 
introduce AUGMECON-R, a powerful and robust improvement that addresses these weaknesses, and apply it in 
comparison with its predecessor, in both a set of reference problems from the literature and a series of significantly 
more complex problems of four to six objective functions. 

The rest of the paper is organised as follows. Section 2 carries out a brief overview of the ε-constraint, AUGMECON 
and AUGMECON 2 methods, by highlighting their characteristics of significance to introducing AUGMECON-R in 
Section 3. Section 4 performs a comparative analysis between AUGMECON-R and its predecessor (AUGMECON 
2). Finally, Section 5 draws conclusions and outlines prospects for future work. 

2.2 A brief overview of the augmented ε-constraint method 
According to Hwang et al. (1980), Multiple-Objective Mathematical Programming (MOMP) solving algorithms can 
be organised in three groups: a priori methods, in which the decision makers have the capacity to express their 
preferences or objective function weights prior to solving the problem; interactive methods, which feature an 
ongoing dialogue between analysts and decision makers, eventually leading to preferences converging with 
solutions; and a posteriori methods, in which the problem is solved and the effective Pareto solutions are found, 
allowing the decision makers to select among these based on their preferences. Given the infrequency of early 
knowledge and quantification capacity of the decision makers’ preference model, which is prerequisite to a priori 
methods, and the difficulty in the decision makers having complete overview of (an approximation of) the Pareto 
front, associated with interactive methods, this paper orients on a posteriori methods to solving a MOMP problem 
of the form: 
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max
 
�𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥), … , 𝑓𝑓𝑝𝑝(𝑥𝑥)� 

𝑒𝑒. 𝑆𝑆. : 𝑥𝑥 ∈ 𝑆𝑆 

where: 𝑥𝑥 is the vector of decision variables, 𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥), … , 𝑓𝑓𝑝𝑝(𝑥𝑥) are the 𝑝𝑝 objective functions, and 𝑆𝑆 is the space 
of efficient solutions. 

Among these methods, the ε-constraint algorithm aims at optimising one objective function, while considering all 
other objective functions as constraints. The model, widely applied for multi-objective linear programming 
problems (Mavrotas et al., 2011; Sakar and Koksalan, 2013), is thus transformed to: 

max
 

{𝑓𝑓1(𝑥𝑥)} 

𝑒𝑒. 𝑆𝑆.: 

𝑓𝑓2(𝑥𝑥) ≥ 𝑒𝑒2 

𝑓𝑓3(𝑥𝑥) ≥ 𝑒𝑒3 

… 

𝑓𝑓𝑝𝑝(𝑥𝑥) ≥ 𝑒𝑒𝑝𝑝 

𝑥𝑥 ∈ 𝑆𝑆 

By changing the right-hand side of the constrained objective functions (𝑒𝑒𝑖𝑖), efficient solutions are obtained. The 
problem is solved on a step-by-step basis on an 𝑁𝑁2 × 𝑁𝑁3 × … × 𝑁𝑁𝑝𝑝 grid, where 𝑁𝑁𝑖𝑖 is the integer range of the 
objective function 𝑓𝑓𝑖𝑖 .  

One of the method’s main advantages is that the number of efficient solutions can be controlled, by appropriately 
adjusting the number of grid points, on which each optimisation is solved, along the range of each objective 
function. However, this range must be calculated; it cannot be secured that solutions are not weak but effective; 
and solving any problem with more than two objective functions is very time-consuming. 

These weaknesses motivated the development of augmented ε-constraint or AUGMECON (Mavrotas, 2009), which 
transforms the problem into the following: 

max
 
�𝑓𝑓1(𝑥𝑥) + 𝑒𝑒𝑝𝑝𝑒𝑒 × �𝑒𝑒2 + 𝑒𝑒3 + ⋯+ 𝑒𝑒𝑝𝑝�� , 𝑒𝑒𝑝𝑝𝑒𝑒 ∈ (10−6, 10−3) 

𝑒𝑒. 𝑆𝑆.: 

𝑓𝑓2(𝑥𝑥) − 𝑒𝑒2 = 𝑒𝑒2 

𝑓𝑓3(𝑥𝑥) − 𝑒𝑒3 = 𝑒𝑒3 

… 

𝑓𝑓𝑝𝑝(𝑥𝑥) − 𝑒𝑒𝑝𝑝 = 𝑒𝑒𝑝𝑝 

𝑥𝑥 ∈ 𝑆𝑆 

In essence, AUGMECON introduces the following modifications to the original ε-constraint method, to ensure that 
only effective Pareto solutions are obtained: (i) all constraints corresponding to the 𝑝𝑝 − 1 objective functions 
become strict inequalities; and (ii) slack (or surplus) variables are introduced both to the primary objective function 
and to the constrained ones. 

Another significant novelty of AUGMECON is that it exploits cases where the problem is infeasible, leading to an 
early exit from the nested loop of the step increase function: the algorithm initially sets lower bounds to the 
constrained objective functions, which gradually become stricter; if the problem becomes infeasible, i.e. the model 
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cannot be solved for the given constraint of an objective function, after a specific grid point increase, there is no 
point in strengthening the constraints and the algorithm exits from the innermost loop and continues to the next 
grid point of said objective function. This way AUGMECON contributes to faster model solution, especially when 
the problem features more than two objective functions. 

AUGMECON has been employed in various applications and systems, including supply chain management (Torabi 
et al., 2013; Bootaki et al., 2014; Bootaki et al., 2016; Canales-Bustos et al., 2017; Musavi and Bozorgi-Amiri, 2017; 
Ravat et al., 2017; Vieira et al., 2017; Sazvar et al., 2018; Ehrenstein et al., 2019; Oiu et al., 2019; Shekarjan et al., 
2019; Xin et al., 2019), energy planning (Hombach and Walther, 2015; Tartibu et al., 2015; Arancibia et al., 2016; 
Cambero and Sowlati, 2016; Cambero et al., 2016; Mohammadkhani et al., 2018; Rabbani et al., 2018; Sedighizadeh 
et al., 2018; Razm et al., 2019), waste management (Mavrotas et al., 2013; Mavrotas et al., 2015; Inghels et al., 2016), 
portfolio analysis (Xidonas et al., 2011; Khalili-Damghani et al., 2012; Xidonas et al., 2010), transportation (Resat 
and Turkay, 2015; Babakeik et al., 2018) and others (Khalili-Damghani and Amiri, 2012; Aras and Yurdakul, 2016; 
Yu et al., 2018; Behmanesh and Zandieh, 2019; Zhang et al., 2019; Xiong et al., 2019); and has been combined with 
or compared against evolutionary algorithms (Khalili-Damghani et al., 2013; Dabiri et al., 2017; Wang et al., 2018; 
Mohammadi et al., 2019).  

Mavrotas and Florios (2013) further extended this algorithm in AUGMECON 2, by introducing a bypass coefficient 
as well as a type of lexicographic optimisation to all objective functions, the order of which was insignificant in 
AUGMECON: 

max
 
�𝑓𝑓1(𝑥𝑥) + 𝑒𝑒𝑝𝑝𝑒𝑒 × �𝑒𝑒2/𝑟𝑟2 + 10−1𝑒𝑒3/𝑟𝑟3 + ⋯+ 10−(𝑝𝑝−2)𝑒𝑒𝑝𝑝/𝑟𝑟𝑝𝑝�� 

By means of the bypass coefficient, AUGMECON 2 makes use of the information provided by the slack/surplus 
variables of the constrained objective functions to avoid unnecessary iterations and accelerate solution. The jumps 
made in the innermost loop to help accelerate grid scanning allow for decreasing the step of the process and 
therefore increasing the grid points; by doing so, the exact Pareto set can be identified. But, in order to do so, (a) 
the objective function coefficients must be integer and (b) the nadir points of the Pareto set must be known.  

To deal with the first limitation, non-integer coefficients can be multiplied by the appropriate power of 10, as 
necessary, which can however significantly expand the grid and increase the grid points, leading to very large 
solution times. Regarding the second limitation, adding steps to accurately calculate the nadir points of the Pareto 
set can also increase the algorithm’s complexity, so the AUGMECON 2 algorithm only uses an underestimation 
(overestimation), i.e. a lower (upper) bound, in cases of maximisation (minimisation) objectives. 

Despite its weaknesses, which are analysed in detail below, AUGMECON 2 has significantly better performance 
over AUGMECON, and this is why it has also been applied in a wide range of problem domains since its 
introduction, including supply chain management (Gavranis and Kozanidis, 2017; Bal and Satoglu, 2018; Attia et 
al., 2019; Habibi et al., 2019; Resat and Unsal, 2019; Roshan et al., 2019; Saedinia et al., 2019; Vafaeenezhad et al., 
2019; Mohammed and Duffuaa, 2020), project selection (Mavrotas et al., 2015; Schaeffer and Cruz-Reyes, 2016), 
and network optimisation and planning (Florios and Mavrotas, 2014; Oke and Siddiqui, 2015; Mousazadeh et al., 
2018; Rahimi et al., 2019), as well as in policy-related problems, such as energy and climate action (Forouli et al., 
2019a; Forouli et al., 2019b; Van de Ven et al., 2019; Doukas and Nikas, 2020). 

2.3 AUGMECON-R 

2.3.1 Motivation  

Although AUGMECON 2 constitutes a significant upgrade to AUGMECON and a powerful algorithm for solving 
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multi-objective integer programming (MOIP) problems and finding the exact Pareto set of a problem, it features 
certain weaknesses, the need to overcome which has motivated the development of AUGMECON-R. 

First, the solution time for large-scale problems of more than two objective functions is still high, since jumps only 
occur in the innermost loop and not across the grid and for all nested loops, which represent the constrained 
objective functions: a problem of 𝑓𝑓 objective functions of average range 𝑓𝑓 would have an AUGMECON 2 
complexity of 𝑂𝑂(𝑓𝑓𝑚𝑚−1), which is relatively large for programs running in environments like GAMS. For example, a 
6kpY problem (a knapsack problem of 6 objective functions, 6 constraints and Y decision variables), with an 
average integer range of 1,000 for each objective function, would feature a complexity of 𝑂𝑂(1015), or slightly less 
given the iterations avoided due to the bypass coefficient of the innermost loop. The more objective functions a 
problem has, the more time-consuming AUGMECON 2 becomes for solving said problem. 

Second, AUGMECON 2 requires that objective function coefficients be integer. If this is not the case, non-integer 
coefficients are multiplied by the appropriate power of 10, thereby also increasing the complexity accordingly: a 
problem of 𝑓𝑓 objective functions of average range 𝑓𝑓 and an average number of decimals 𝑘𝑘 would have an 
AUGMECON 2 complexity of 𝑂𝑂�𝑓𝑓𝑚𝑚−1 × 10𝑘𝑘×(𝑚𝑚−1)�. 

Third, implementing AUGMECON 2 requires a priori knowledge of the nadir points of the objective functions. 
Nadir point calculation algorithms are usually complex, hard to program and could require writing chunks of code 
larger than those of AUGMECON 2 itself; are generally capable of solving problems of up to three objective 
functions; and their running time is comparable to the one required by AUGMECON 2 (Alves and Costa, 2009). 
This is why AUGMECON 2 opts for underestimation of nadir points, i.e. the use of lower bounds of the objective 
functions, thereby only slightly increasing computation time. This process of approximating the nadir points, in 
AUGMECON 2, takes place in the problem’s payoff table where the lowest values, which in theory are equal to or 
greater than the nadir points, are multiplied by an arbitrary coefficient (e.g. 90%), resulting in what is hopefully an 
underestimation of the actual nadir points. Academically speaking, one heuristic approach around this would be 
the calculation of all payoff tables, considering all possible orders of the constrained objective functions; this would 
expectedly give a closer approximation to the actual nadir points, allowing tightening the arbitrary coefficient, e.g. 
to 95%, hopefully ensuring that the nadir point would be included in the new, smaller grid. However, this approach 
would simply improve computation time, without avoiding either the arbitrary or the hopeful nature of the 
approximation process. 

Fourth, the correlation between the order of constrained objective functions across loops and computation time 
is a weakness by itself: AUGMECON 2 features a bypass coefficient only for the innermost loop of the process, 
resulting in getting rid of only those unnecessary grid point checks that can be avoided within the innermost loop. 
In order to maximise the number of unnecessary iterations avoided as much as possible, after calculating the 
payoff table, the algorithm should be in a position to switch order of constrained objective functions accordingly, 
so that the objective function of the largest range could be placed in the innermost loop. 

These four limitations associated with AUGMECON 2 constitute the motivation of developing a new algorithm 
that can significantly improve computation time and efficiency, as well as allow for easily solving problems that 
have so far been hard or practically impossible to solve. 

2.3.2 An improved search algorithm 

Reading through (Mavrotas and Florios, 2013) and the performance recorded for AUGMECON 2, there appears to 
be a large deviation between the number of models solves and the solutions included in the Pareto front. For 
example, in the case of the 3kp100 problem—i.e. of a knapsack problem of three objective functions, three 
constraints and a hundred decision variables—there are 103,049 models solved, which is approximately sixteen 
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times the number of the solutions included in the Pareto Front (6,500). However, given that this is a MOIP problem 
and AUGMECON 2 calculates the exact Pareto set by using a unity step to explore all possible integer values of 
the objective functions across the grid, one would expect that the models solved would be equal or at least close 
to the number of Pareto front solutions, which is not the case. 

This large number of unnecessary optimisations computed can be attributed to the use of only one bypass 
coefficient in the innermost loop and, in addition, to the large number of infeasibilities that could have otherwise 
been to some extent foreseen and avoided. 

In this direction, AUGMECON-R introduces a novelty that is largely based on the existing notion of the bypass 
coefficient, by incorporating to the model as many bypass coefficients as objective functions, which would be of 
the form: 

𝑆𝑆2 = 𝑖𝑖𝑓𝑓𝑆𝑆(𝑒𝑒2/𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝2) 

𝑆𝑆3 = 𝑖𝑖𝑓𝑓𝑆𝑆(𝑒𝑒3/𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝3) 

… 

𝑆𝑆𝑝𝑝 = 𝑖𝑖𝑓𝑓𝑆𝑆�𝑒𝑒𝑝𝑝/𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝𝑝𝑝� 

where: 𝑖𝑖𝑓𝑓𝑆𝑆() is the function that returns the integer part of a real number, and 𝑒𝑒𝑖𝑖 is the slack/surplus variable for 
an objective function 𝑖𝑖, and 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝𝑖𝑖 is the discretisation step for this objective function: 

𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝𝑖𝑖 = 𝑟𝑟𝑖𝑖/𝑞𝑞𝑖𝑖 

where: 𝑟𝑟𝑖𝑖 is the range of the objective function 𝑖𝑖, and 𝑞𝑞𝑖𝑖 the number of equal intervals that the range is divided to 
formulate the grid, so that the latter comprise 𝑞𝑞𝑖𝑖 + 1 grid points. 

This way, instead of having one bypass coefficient acting at the innermost loop like AUGMECON 2, AUGMECON-
R features an active bypass coefficient in each one of the outer loops as well. In every iteration, bypass coefficients 
𝑆𝑆𝑖𝑖 = 𝑖𝑖𝑓𝑓𝑆𝑆(𝑒𝑒𝑖𝑖/𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝𝑖𝑖) are calculated. When 𝑒𝑒𝑖𝑖 > 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝𝑖𝑖 , in the next iteration for 𝑆𝑆𝑖𝑖′ corresponding to 𝑒𝑒𝑖𝑖′ = 𝑒𝑒𝑖𝑖 + 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝𝑖𝑖 the 
optimisation will again lead to the same solution, with 𝑒𝑒𝑖𝑖′ = 𝑒𝑒𝑖𝑖 − 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝𝑖𝑖 , making the iteration unnecessary. The 𝑆𝑆𝑖𝑖 
bypass coefficient indicates how many iterations should be bypassed, provided that these iterations concern the 
𝑖𝑖𝑡𝑡ℎ objective function and the right-hand sides of all other constrained objective functions remain constant. The 
new process introduced in the proposed algorithm can be shown with a simple example. Assume that we have a 
four-objective problem with the following payoff table as shown in Table 1 (all objective functions to be 
maximised): 
 
Table 6 Payoff table of example problem. 

  f1 f2 f3 f4 
max f1(x) 105 102 77 50 
max f2(x) 95 112 80 53 
max f3(x) 100 108 87 46 
max f4(x) 100 110 80 56 

 
From the payoff table, we have 𝑟𝑟2 = 𝑟𝑟3 = 𝑟𝑟4 = 10, which are divided into ten equal intervals, with a unity step of 
𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝2 = 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝3 = 𝑒𝑒𝑆𝑆𝑒𝑒𝑝𝑝4 = 1. AUGMECON-R includes the following process: 

𝐹𝐹𝑡𝑡𝑟𝑟 𝑖𝑖 = 0 − 10 
𝑒𝑒4 = 46 + 𝑖𝑖 
𝐹𝐹𝑡𝑡𝑟𝑟 𝑆𝑆 = 0 − 10 
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𝑒𝑒3 = 77 + 𝑆𝑆 
𝐹𝐹𝑡𝑡𝑟𝑟 𝑘𝑘 = 0 − 10 

𝑒𝑒2 = 102 + 𝑘𝑘 
 𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑒𝑒(𝑃𝑃) 
𝑁𝑁𝑒𝑒𝑥𝑥𝑆𝑆 𝑘𝑘 

𝑁𝑁𝑒𝑒𝑥𝑥𝑆𝑆 𝑆𝑆 
𝑁𝑁𝑒𝑒𝑥𝑥𝑆𝑆 𝑖𝑖 

The objective function 𝑓𝑓2(𝑥𝑥) is represented in the innermost loop (k counter). Assume that we currently are at the 
2nd iteration of the innermost loop (𝑘𝑘 = 1), the 4th iteration of the middle loop (𝑆𝑆 = 3)and the 3rd iteration of the 
outermost loop (𝑖𝑖 = 2), with 𝑒𝑒2 = 103, 𝑒𝑒3 = 80, and 𝑒𝑒4 = 48, as displayed in brackets and bold in Table 2. 
 
Table 7 Grid points of the example problem. 

Objective 
function 

Counter 
Grid points  

0 1 2 3 4 5 6 7 8 9 10 
f2(x) k 102 [103] 104 105 106 107 108 109 110 111 112 
f3(x) j 77 78 79 [80] 81 82 83 84 85 86 87 
f4(x) i 46 47 [48] 49 50 51 52 53 54 55 56 

 
After the optimisation, we obtain 𝑒𝑒2 = 4, 𝑒𝑒3 = 3, and 𝑒𝑒4 = 4, meaning that 𝑓𝑓2 = 103 + 4 = 107, 𝑓𝑓3 = 80 + 3 = 83, 
and 𝑓𝑓4 = 48 + 4 = 52 (and, for the sake of completeness, 𝑓𝑓1 = 97). Hence, 𝑆𝑆2 = 4, 𝑆𝑆3 = 3, and 𝑆𝑆4 = 4. While 
AUGMECON 2 would consider unnecessary only the four next iterations of the innermost loop, AUGMECON-R 
acknowledges that any combination of 𝑘𝑘 ∈ [1,5], 𝑆𝑆 ∈ [3,6], 𝑖𝑖 ∈ [2,6] would return the same solution. In this 
problem, AUGMECON-R would avoid 19 unnecessary iterations that AUGMECON 2 would not. 

Assuming we have the capacity to store the values of the bypass coefficients 𝑆𝑆𝑖𝑖 in optimisation ℎ and defining as 
pure any optimisation that leads to a solution different from the one resulting from a unity decrease of any of the 
parameters for the right-hand side for a specific iteration drawn from the grid points of the objective functions, 
𝑒𝑒𝑖𝑖 , then AUGMECON-R can avoid: 

��𝑆𝑆3,ℎ�
ℎ∈𝐷𝐷

, 𝑖𝑖𝑓𝑓 𝑝𝑝 = 3 

��𝑆𝑆3,ℎ + 𝑆𝑆4,ℎ ∗ �𝑆𝑆3,ℎ + 1��
ℎ∈𝐷𝐷

, 𝑖𝑖𝑓𝑓 𝑝𝑝 = 4 

��𝑆𝑆3,ℎ + 𝑆𝑆4,ℎ ∗ �𝑆𝑆3,ℎ + 1� + 𝑆𝑆5,ℎ ∗ �𝑆𝑆4,ℎ + 1��𝑆𝑆3,ℎ + 1��
ℎ∈𝐷𝐷

, 𝑖𝑖𝑓𝑓 𝑝𝑝 = 5 

��𝑆𝑆3,ℎ + 𝑆𝑆4,ℎ�𝑆𝑆3,ℎ + 1� + 𝑆𝑆5,ℎ�𝑆𝑆4,ℎ + 1��𝑆𝑆3,ℎ + 1� + ⋯+ 𝑆𝑆𝑝𝑝,ℎ�𝑆𝑆𝑝𝑝−1,ℎ + 1��𝑆𝑆𝑝𝑝−2,ℎ + 1�… �𝑆𝑆3,ℎ + 1��
ℎ∈𝐷𝐷

, 𝑖𝑖𝑓𝑓 𝑝𝑝 ≥ 6 

iterations compared to AUGMECON 2, where: ℎ is a pure optimisation and 𝐷𝐷 is the sum of all pure optimisations. 

In order to achieve this for any problem of 𝑝𝑝 objective functions, as suggested above, the AUGMECON-R algorithm 
requires that a (𝑝𝑝 − 1)-dimensional array be introduced to store integer flag values, 𝑓𝑓𝑆𝑆𝑓𝑓𝑔𝑔�(𝑁𝑁2 + 1) × (𝑁𝑁3 + 1) ×
… × �𝑁𝑁𝑝𝑝 + 1��, where 𝑁𝑁𝑖𝑖 is the integer range of the objective function 𝑓𝑓𝑖𝑖 . The array is initialised with zero values 
and, prior to any optimisation, the algorithm examines if the corresponding value of the array is zero or not; if it 
is zero, the optimisation is performed, otherwise the algorithm jumps in the innermost loop as many steps as the 
array value indicates. 

By introducing the flag array and the notion of pure optimisations, AUGMECON-R can at the same time avoid any 
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unnecessary optimisations due to infeasibilities: if, for any value of 𝑒𝑒2∗, 𝑒𝑒3∗, … , 𝑒𝑒𝑝𝑝∗ of the right-hand side of the 
constrained objective functions, there lies an infeasibility, then for an increase of any of 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑝𝑝 with all others 
equal to or greater than 𝑒𝑒2∗, 𝑒𝑒3∗, … , 𝑒𝑒𝑝𝑝∗ an infeasibility will also be reached. Therefore, for 𝛿𝛿𝑖𝑖 ∈ 𝑁𝑁, any {𝑒𝑒𝑖𝑖∗ + 𝛿𝛿𝑖𝑖} 
combination on the right-hand side of the constrained objective functions will return an infeasibility; while 
AUGMECON 2 would only avoid infeasibilities for �𝑒𝑒2∗ + 𝛿𝛿2, 𝑒𝑒3∗, … , 𝑒𝑒𝑝𝑝∗�, 𝛿𝛿2 > 0, AUGMECON-R avoids all 
infeasibilities for �𝑒𝑒2∗ + 𝛿𝛿2, 𝑒𝑒3∗ + 𝛿𝛿3, … , 𝑒𝑒𝑝𝑝∗ + 𝛿𝛿𝑝𝑝�.  

The proposed algorithm can, therefore, avoid all iterations, for which all right-hand sides of the constrained 
objective functions are equal to or greater than the 𝑒𝑒𝑖𝑖∗ values that led to an infeasibility.  

The flow chart of AUGMECON-R is shown in Figure 1. 
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Figure 11 Flowchart of the AUGMECON-R algorithm. 

2.3.3 Source code 

The code for AUGMECON-R customised for a representative model of a 4kp40 problem, freely available on 
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GitHub3, has largely been based on the AUGMECON 2 source code and is presented in Appendix A. 

2.4 Comparative analysis and discussion 
In this section, AUGMECON-R is employed for numerous problems and its performance is compared against the 
performance of AUGMECON 2. Initially, the benchmark problems presented by Mavrotas and Florios (2013) are 
solved, acting as a reference, followed by a series of random, more challenging in terms of objective functions and 
density problems; for the latter, AUGMECON 2 was also used by the authors, to provide for a comparative analysis.  

It must be noted that all problems presented in the section have been solved in GAMS version 23.5, using CPLEX 
12.2, a 64-bit Windows 10 operating system, a 2.7 GHz i5-6400 processor and an 8GB RAM memory. 

2.4.1 Reference benchmark problems 

Here, given that AUGMECON-R was designed as an upgrade to AUGMECON 2, we use as reference the 3kpY 
problems Mavrotas and Florios (2013) used to compare the performance of and establish AUGMECON 2 against 
AUGMECON; these include a 3kp100, a 3kp50 and a 3kp40 problem, i.e. selected knapsack problems of three 
objective functions, three constraints, and 100, 50 and 40 decision variables respectively. The 2kpY problems used 
in the same study were disregarded since, based on the proposed model outlined in Section 3.2, AUGMECON-R 
is identical to AUGMECON2 when dealing with only two objective functions. 

It should also be noted that, in their study, Mavrotas and Florios (2013) do not use their originally proposed 
AUGMECON 2 algorithm, but a programming modification of it that arbitrarily avoids certain optimisations at the 
initial stages, both in the innermost loop and in the outer loop. This is noteworthy as, although the use of this 
modification does not significantly change the order of the resulting difference (cf. the performance reported in 
Mavrotas and Florios, 2013), here the performance of AUGMECON-R is compared against the original AUGMECON 
2 algorithm, and not against the ad hoc modified one. Table 3 summarises the performance between the two 
algorithms, in terms of the CPU time needed, the grid points per objective function, the total models solved, the 
infeasibilities found, the number of models solved multiple times (‘duplicate solutions’), the dominated solutions 
and the solutions found in the Pareto front. 
 
Table 8 Performance comparison between AUGMECON 2 (AUGM 2) and AUGMECON-R (AUGM-R) for the 
3kpY problems. 
  3kp100 3kp50 3kp40 
  AUGM 2 AUGM-R AUGM 2 AUGM-R AUGM 2 AUGM-R 
CPU Time 23 h 268 min 113 min 695 sec 42 min 220 sec 
Grid points per objective 
function 

1236 1236 846 846 540 540 

Models solved 103652 11727 25245 1951 11098 746 
Infeasibilities 1093 137 564 78 420 34 
Duplicate solutions 96020 5071 23630 823 10287 321 
Dominated solutions 39 19 3 2 2 2 
Solutions in the Pareto 6500 6500 1048 1048 389 389 

 
 
 
3 Github link (to be included after acceptance, to ensure double-blind review process). 
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front 
 
Our findings suggest that, for the same number of solutions in the Pareto front, AUGMECON-R is multiple times 
faster and solves significantly less models, leading to significantly fewer infeasibilities and duplicate solutions 
(Table 4). To make up for potential randomness in CPU times due to different levels of CPU core availability, the 
CPU times presented are average times after a series of model runs, so that comparison can be considered 
unbiased and representative. This is also why the number of models solved is highlighted as a comparison metric, 
indicating similar ratios. It should be noted that the differences in CPU time ratios and models solved can be 
attributed to the time needed by AUGMECON-R to perform the bypass condition checks. Furthermore, the 
differences of ratios among the three problems can be attributed to the different density of the problems, i.e. the 
ratio of the number of solutions included in the Pareto front over the number of models solved: the denser the 
problem, the smaller the time difference between the two algorithms, as fewer iterations are avoided in the loops 
outside the innermost loop.  
 
Table 9 Comparison ratios of performance of AUGMECON 2 over AUGMECON-R for the 3kpY problems.  

Problem CPU Time Ratio 
Models solved 
Ratio 

Infeasibilities 
Ratio 

Duplicate solutions 
Ratio 

3kp100 5.15 8.84 7.98 18.93 
3kp50 9.75 12.94 7.23 28.71 
3kp40 11.45 14.88 12.35 32.05 

 
To highlight the enhanced performance of AUGMECON-R over AUGMECON 2, the arbitrary selection of the lower 
bounds loosens, to maximise the probability of including the actual nadir points in the analysis and ensure that 
no solution is missed. So, instead of multiplying the nadir values of the payoff tables by 95%, as was the case in 
the problems above, we reiterate our analysis of these three problems, by multiplying the nadir values by 5%, 
leading to an emphatically larger grid, in order to evaluate how this impacts the performance of the two algorithms 
in comparison (Table 5). 
 
Table 10 Performance comparison between AUGMECON 2 (AUGM 2) and AUGMECON-R (AUGM-R) for the 
3kpY problems with lower bounds. 
  3kp100* 3kp50* 3kp40* 
  AUGM 2 AUGM-R AUGM 2 AUGM-R AUGM 2 AUGM-R 
CPU Time 62 h 274 min 230 min 737 sec 130 min 234 sec 
Grid points per objective 
function 

3940 3940 1880 1880 1560 1560 

Models solved 417809 11768 61442 1953 39648 748 
Infeasibilities 1093 137 564 78 420 34 
Duplicate solutions 410138 5090 59827 825 38836 322 
Dominated solutions 78 41 3 2 3 3 
Solutions in the Pareto front 6500 6500 1048 1048 389 389 

 
Although the difference of the two algorithms is now more evident for the case of significantly lower bounds, by 
looking at Tables 3 and 5, it is worth pointing out that this problem modification led to a CPU time increase of 
2.24%, 6.00% and 6.40% for AUGMECON-R, compared to a CPU time increase of 170.00%, 103.50% and 209.52% 
for AUGMECON 2, for 3kp100, 3kp50 and 3kp40 respectively. Similar findings can be observed for all other relevant 
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metrics; for example, the additional models solved by AUGMECON-R are negligible in all three problems (41, 2 
and 2), the same cannot be said for AUGMECON 2 (314157, 36197 and 28550 respectively). 

2.4.2 Complex benchmark problems 

Here, we implement both algorithms to evaluate AUGMECON-R in problems of more than three objective 
functions. Before doing so, however, we distinguish between uncorrelated and weakly correlated problems 
(Martello and Monaci, 2020; Shah and Reed, 2011): uncorrelated problems assume no correlation between 
elements of the objective function coefficient matrix and those of the constraint coefficient matrix, while weakly 
correlated problems assume a weak correlation between these elements. This weak correlation makes their 
solution significantly more difficult, as the solver requires more time resources, and given the time requirements 
for AUGMECON 2 to solve such problems, only uncorrelated problems are assumed in this study. 

We define the following problems: 

A 4kp40 problem, with 155, 119 and 121 being the true nadir points of the three constrained objective functions 
and 123, 127 and 140 being their ranges respectively. 

A 4kp40* problem, which is identical with the 4kp40 problem but without a priori knowledge of nadir points, hence 
with the consideration of significantly lower bounds: 15, 11 and 13 being the lower bounds and 263, 235 and 248 
the range respectively. 

A 4kp50 binary problem, with objective function coefficients resulting from a uniform distribution 𝑈𝑈[0,1] and 
constraint coefficients from a uniform distribution 𝑈𝑈[50,70], with 718, 735 and 713 being the true nadir points, 
and 51, 35 and 44 being the ranges respectively. 

A 4kp50* binary problem, which is identical with the 4kp50 binary problem but after extending the range of the 
objective functions by assigning new lower bounds at 70, 69 and 57. 

A 5kp40 problem, with objective function coefficients resulting from a uniform distribution 𝑈𝑈[50,40] and constraint 
coefficients from a uniform distribution 𝑈𝑈[2,10], with 29, 32, 27 and 27 being the true nadir points of the four 
constrained objective functions, and 21, 21, 27 and 25 being the ranges respectively.  

A 5kp40* problem, which is identical with the 5kp40 problem but after extending all ranges to 45, to make sure 
we include the now unknown true nadir points, with 5, 8, 9 and 7 being the new lower bounds. 

A 6kp50 binary problem, with objective function coefficients resulting from a uniform distribution 𝑈𝑈[0,1] and 
constraint coefficients from a uniform distribution 𝑈𝑈[0,5], with 38, 37, 31, 27 and 30 being the true nadir points of 
the five constrained objective functions, and 21, 24, 26, 30 and 22 being the ranges respectively. 

A 6kp50* problem, which is identical with the 6kp50 binary problem but after extending all ranges to 50, to make 
sure we include the now unknown true nadir points, with 9, 11, 7, 7 and 2 being the new lower bounds. 

 

The matrices of the objective function and constraint coefficients are provided in Appendix B, for all of the above 
pairs of problems, i.e. for 4kp40 – 4kp40*, 4kp50 – 4kp50*, 5kp40 – 5kp40* and 6kp50 – 6kp50*. 

Table 6 summarises the performance differences between AUGMECON 2 and AUGMECON-R, for the problems 
4kp40 and 4kp40*, while Figure 2 visualises the Pareto front of the problem. 
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Table 11 Performance comparison between AUGMECON 2 and AUGMECON-R for the 4kp40 problem, with 
the true nadir points (4kp40) and with lower bounds (4kp40*). 
  4kp40 4kp40* 
  AUGMECON 2 AUGMECON-R AUGMECON 2 AUGMECON-R 
CPU Time 1214 min 56 min 85 hours 59 min 
Models solved 290443 14735 1431195 10846 
Infeasibilities 14735 359 35363 359 
Duplicate solutions 272530 7324 1392653 7315 
Dominated solutions 6 0 7 0 
Solutions in the 
Pareto front 

3172 3172 3172 3172 

 

 
 

Figure 12 The Pareto front of the 4kp40 problem. 

It is evident, from Table 4, that AUGMECON-R is almost 21 times faster than its predecessor, with the latter solving 
almost 26 times more models, in the problem where the actual nadir points are known a priori; this ratio difference 
is, as discussed above, due to the number of checks made by AUGMECON-R in its 𝑓𝑓𝑆𝑆𝑓𝑓𝑔𝑔 array. When considering 
the case of the true nadir points being unknown and thus extending the grid to secure that the actual nadir points 
are included in the analysis and that no solution is missed, AUGMECON-R outperforms AUGMECON 2 by solving 
about 131 times less models, more than 85 times faster. One odd finding is that AUGMECON-R now solves even 
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less models than before; given how small the lower bounds are, the surplus variables are significantly larger, and 
this circumstantially leads to less models. This, however, does not bear any negative impacts on the accuracy of 
the algorithm, as it stumbles upon equally as many infeasibilities.  

Similarly, Table 7 summarises the performance differences between AUGMECON 2 and AUGMECON-R, for the 
binary problems 4kp50 and 4kp50*, while Figure 3 visualises the Pareto front of the problem. 
 
Table 12 Performance comparison between AUGMECON 2 and AUGMECON-R for the 4kp50 problem, with 
the true nadir points (4kp50) and with lower bounds (4kp50*). 
  4kp50 4kp50* 
  AUGMECON 2 AUGMECON-R AUGMECON 2 AUGMECON-R 
CPU Time 1021 sec 31 sec 161 hours 939 sec 
Models solved 6296 176 >4000000 161 
Infeasibilities 1211 28 - 28 
Duplicate solutions 5039 102 - 87 
Dominated solutions 0 0 - 0 
Solutions in the 
Pareto front 

46 46 46 46 

 

 
 

Figure 13 The Pareto front of the 4kp50 problem. 
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Again, AUGMECON-R solves the 4kp50 problem almost 32 times faster, having solved about 35 times less models. 
But what is strikingly interesting is that, when considering the 4kp50* problem, AUGMECON 2 required 161 hours 
and solved more than four million models. These findings clearly indicate that AUGMECON-R has the capacity to 
timely solve time-wise non-viable, complex problems, ensuring accuracy and assuring no solution is missed.  

Moving onto a five-objective problem, Table 8 summarises the performance differences between AUGMECON 2 
and AUGMECON-R, for the problems 5kp40 and 5kp40*, while Figure 4 visualises the Pareto front of the problem. 
 
Table 13 Performance comparison between AUGMECON 2 and AUGMECON-R for the 5kp40 problem, with 
the true nadir points (5kp40) and with lower bounds (5kp40*). 
  5kp40 5kp40* 
  AUGMECON 2 AUGMECON-R AUGMECON 2 AUGMECON-R 
CPU Time 12035 sec 175 sec 27 hours 194 sec 
Models solved 52030 618 458760 622 
Infeasibilities 9351 114 47521 114 
Duplicate solutions 42553 378 411113 382 
Dominated solutions 0 0 0 1 
Solutions in the 
Pareto front 

126 126 126 126 
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Figure 14 The Pareto front of the 5kp40 problem. 
 
AUGMECON-R solved the 5kp40 problem almost 68 times faster, having solved about 83 times less models, while 
in the case of lack of a priori knowledge lower bounds considering the 4kp50* problem, these differences surge 
to 505 and 737 times respectively. In both cases, however, it is evident that AUGMECON-R outperforms 
AUGMECΟN 2 even more than in the previous two sets of problems of four objective functions; as previously 
discussed, the larger the number of objective functions is, the larger this outperformance is. This can be 
highlighted in the final problem of six objective functions, as follows in Table 9 and Figure 5. 
 
Table 14 Performance comparison between AUGMECON 2 and AUGMECON-R for the 6kp50 problem, with 
the true nadir points (6kp50) and with lower bounds (6kp50*). 
  6kp50 6kp50* 
  AUGMECON 2 AUGMECON-R AUGMECON 2 AUGMECON-R 
CPU Time 52 hours 1207 sec - 4145 sec 
Models solved 1104406 6269 - 6242 
Infeasibilities 193612 863 - 863 
Duplicate solutions 909949 4563 - 4536 
Dominated solutions 2 0 - 0 
Solutions in the 
Pareto front 

843 843 843 843 

 

 
 

Figure 15 The Pareto front of the 6kp50 problem. 
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As with the 4kp50 binary problem, the 6kp50 binary problem solved by both AUGMECON 2 and AUGMECON-R 
emphasises the performance difference between the two methods. Given the significantly higher complexity that 
a sixth objective function adds to the problem, the CPU time and models solved ratios are even higher in this case, 
with AUGMECON 2 solving 175 more models 155 times slower. By extending the grid in order to ensure that the 
a priori unknown true nadir points are included in the analysis, AUGMECON 2 cannot solve the problem in a 
reasonable amount of time—it took the algorithm 47 hours to cross the grid once.  

2.5 Conclusions 
In this study, an improved version of the augmented ε-constraint method, AUGMECON-R, is introduced, allowing 
robust and timely optimisation of complex systems. Drawing from the weaknesses associated with its predecessor 
(AUGMECON 2), the concept and mathematical model of the proposed method is presented in detail and its code 
provided in Appendix A, before implementing both methods in comparison. The problems solved in Sections 4.1-
4.2 suggest that the proposed method, AUGMECON-R, greatly outperforms its predecessor, AUGMECON 2, by 
solving significantly less models in emphatically less time and allowing us to easily and timely solve hard or even 
impossible, in terms of time and processing requirements, problems of multiple objective functions. AUGMECON-
R, furthermore, solves the problem of unknown nadir points, by using very low or zero-value lower bounds without 
increasing the time requirements.  

As with ε-constraint (e.g. Ehrgott and Ryan, 2002; Laumanns et al., 2006), there exist in the literature a few other 
attempts to identify weaknesses associated with and improve accordingly the AUGMECON 2 algorithm (e.g. 
Domínguez-Ríos et al., 2019), which however tend to perform a posteriori and numerous checks that potentially 
enhance complexity and time requirements, such as (Zhang and Reimann, 2014), which additionally is developed 
in Visual Studio Express instead of the usual operational research problem solving implementation platform, 
GAMS. 

One limitation of the proposed method lies in the introduction of a 𝑓𝑓𝑆𝑆𝑓𝑓𝑔𝑔 array, the size of which is directly linked 
to the range of the objective functions and therefore can lead to occupy a large memory space that could be 
unavailable. To overcome this, AUGMECON-R could in the future be developed in an object-oriented language 
like C++, instead of GAMS, which allows for dynamic memory allocation. This would enable using virtual memory, 
avoiding the 𝑓𝑓𝑆𝑆𝑓𝑓𝑔𝑔 array initialisation with zero values and releasing memory space whenever a counter moves 
across the grid. 

Given that even the slightest uncertainty in the data can render system optimality meaningless from a practical 
point of view (Bertsimas and Sim, 2004) and given recent advancements on robust linear optimisation (Bertsimas 
and Brown, 2009), other prospects for future research include the all-in-one integration of AUGMECON-R with 
uncertainty and robustness analysis methods (Van de Ven et al., 2019; Mastorakis and Siskos, 2016; Ben-Tal et al., 
2010; Kadzinski et al., 2017; Witting et al., 2013), thereby avoiding the use of numerous methods, code scripts, or 
even implementation platforms. 
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3 Optimal allocation of renewable energy subsidies from 
the COVID-19 recovery package: Mitigating emissions and 
creating new jobs 

3.1 Introduction 
The outbreak of the COVID-19 pandemic at the end of 2019 and throughout 2020 has posed significant challenges 
to public health, as well as to medical and research communities in their efforts to battle the impacts of the global 
health crisis (Fauci et al., 2020). With many nations facing mandatory restrictions and lockdowns to mitigate the 
transmission of the virus, economic activities forcefully paused, causing an impending economic recession with 
multiple socio-economic implications (Nicola et al., 2020). The pandemic comes alongside the major ongoing 
threat of climate change, completing the triple front of challenges that humankind must face in the upcoming 
years: health, economic and environmental crises. Although no direct causality exists between the emergence of 
COVID-19 and climate change, human development and environmental malpractices, like deforestation, have 
been found to be the root of pandemics, due to the caused biodiversity losses and the destruction of natural 
habitats (Tollefson, 2020). On the other hand, it is highly unlikely that short-term positive environmental impacts 
that were observed due to the change in lifestyles, like reduced coal consumption and CO2 emissions drop, can 
be maintained in the future (Saadat et al., 2020). With emissions forecasted to fully rebound post-crisis (Le Quéré 
et al., 2020; Nikas et al., 2020) and pandemics expected to increase in frequency unless biodiversity loss is reversed 
(IPBES, 2020), the two threats face important shared challenges (Manzanedo and Manning, 2020) that should be 
addressed co-dependently (Nikas et al., 2021).  

Disruptive developments in the broader landscape, like COVID-19, tend to destabilise organisational structures 
and threaten reproduction of a system.  Impulses for change then emerge that provide the choice for different 
pathways to be followed as the system evolves in light of these disruptions (Geels and Schot, 2007). In the post-
pandemic future, most businesses will have to shift their models in line with corporate social responsibility 
including the introduction of more sustainable practices if they want to survive (He and Harris, 2020). Support 
from states is necessary in the process. In the UK, almost 9 million people constituting a quarter of the workforce 
financially depend on governmental assistance (Miles et al., 2020). At the same time, Eurostat reported that the 
unemployment rate in the EU in September 2020 was 7.5% while the corresponding rate for the euro area was 
8.3% (Eurostat, 2020). This translates to 1.811 and 1.376 million jobs lost in the EU and the euro area respectively, 
compared to September 2019, with unemployment expected to rise as the second wave leads to more lockdowns. 
A key concern however remains on whether fiscal packages will accelerate the achievement of climate goals or 
lock-into a fossil fuel pathway (Hepburn et al., 2020). So far, COVID-19 has put sustainable transitions on hold. 
IRENA reports that the pandemic crisis resulted in both permanent job losses due to project cancellations and 
delays in supply chains with short-term effect: factory shutdowns in China, which dominates the wind power supply 
chain, and the lockdowns in Ecuador, responsible for almost 90% of global balsa production that is used in wind 
turbines, affected operations of supply chains, especially manufacturing of equipment (IRENA, 2020). With more 
jobs lost in the energy sector on top of the 160,000 coal jobs that are already at high risk (Alves Dias et al., 2018), 
the need for a sustainable and just transition that will create family-sustaining jobs is urgent (Henry et al., 2020). 
In the US, although the Green New Deal is surrounded by significant political controversy, the discussion is stirred 
towards the creation of sustainable jobs, with estimates expecting 18.3 additional million jobs to be created, out 
of which more than 2 million are “green” manufacturing jobs (Bezdek, 2020). Such a transition will require a 
carefully conceived plan to handle the shift of workforce and capital between the different sectors (Claeys et al., 
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2019), since it is expected that 1.3% of EU jobs will be reallocated by 2050 (Fragkos and Paroussos, 2018). The 
renewable energy sector can play a pivotal role in the transition, both directly through renewable installation 
projects and indirectly to support other technologies, like “green” hydrogen (Levoyannis, 2021). A recent modelling 
study indicated that under a current policy scenario renewable energy can trigger more than 658,000 jobs 
especially in operation and maintenance and installation; however, in light of COVID-19, these expectations should 
be re-evaluated, considering that these sub-sectors are the most affected by the pandemic. Another issue that 
should also be considered is the ability of all member states to generate RES jobs, since results of the study show 
a concentration of these jobs in select few countries (Ortega et al., 2020).  

To face these challenges and support the Member States’ economic recovery from the effects of COVID-19, the 
bloc has mobilised financial resources as part of the long-term budget of 2021-2027. As updated by the 23 April 
conference of the European Council and respective conclusions of the 21 July Council meeting, the available funds 
for the economic recovery amount to €2,364.3 billion, where €1,074.3 billion come from the Multiannual Financial 
Framework (MMF) 2021-2027, €750 billion constitute the NextGenerationEU program that is tailored to battle the 
impact of the pandemic, and €540 billion are funds already available from safety nets to support workers, 
businesses and member states (European Council, 2020). Based on recent pledges, 30% of the MMF and 
NextGenerationEU budgets, which together account for €1.8 trillion, will be utilised towards achieving the 2030 
climate targets (European Commission, 2020a). This means that until 2027 it is expected that more than half a 
trillion euros will flow towards a green transition. The NextGenerationEU is a financial instrument that aims to raise 
€750 billion from the capital market to establish the Recovery and Resilience Facility (RRF) (€672.5 billion) and 
bring additional funds to other EU programs like ReactEU (€47.5 billion), Horizon Europe (€5 billion), InvestEU 
(€5.6 billion), rural development (€7.5 billion), the Just Transition Fund (JTF) (€10 billion)  and RescEU (€1.9 billion). 
The RRF is the centrepiece mechanism of the NextGenerationEU, which aims to provide Member States with grants 
and loans to support investments and reforms towards the recovery from the pandemic. Specifically, €360 billion 
will be available for loans and €312.5 will be offered in grants, which coupled with the previous amounts bring the 
total available funds in grands to €390 billion (European Commission, 2020b). To access these funds, Member 
States need to submit national recovery and resilience plans until April 2021, which will be assessed based on the 
integration of investments towards green and digital transformation. The Commission expects these plans to 
allocate at least 37% and 20% for green and digital investments and reforms respectively with emphasis on 
contributing to the seven flagship initiatives identified by the 2021 Annual Sustainable Growth for this twin 
transition: Power  up, Renovate, Recharge  and  Refuel, Connect,  Modernise, Scale-up, and Reskill and upskill 
(European Commission, 2020d). Specifically for the green transition, these initiatives should be aligned with the 
updated target of the European Green Deal of 55% emissions reduction by 2030 (Jäger-Waldau et al., 2020), which 
translates to integrating 40% of the 500GW of renewable energy required by 2030, the installation of 6 GW of 
electrolyser capacity, the production and transportation of 1 million tonnes of renewable hydrogen across the EU, 
doubling the renovation rate, as well as building one out of the three million charging points in 2030 and half of 
the 1,000 hydrogen stations needed (European Commission, 2020c). Considering these allocations, it can be 
expected that €250 billion will be used to support investments in clean energy and renewables, energy efficiency 
of buildings, and sustainable transport. However, the detailed breakdown of this budget in the three targets 
depends on the prioritisation of each Member State’s plan, expected by April 2021 at the latest. 

In the context of the societal challenges emerging from COVID-19 and the EU pledges for an economic and 
sustainable recovery, this study aims to optimise the impact of the proposed fiscal program and the budget 
allocated towards the “green” transition in terms of jobs created in the energy sector and the reduction of GHG 
emissions. For this purpose, an extensive literature review is performed to identify the impact of sustainable 
technologies in terms of employment and then the GCAM model is employed to assess different levels of 
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subsidisation on these technologies. The results are fed into a portfolio analysis based on AUGMECON-R and a 
Monte Carlo simulation to handle uncertainty, in order to identify optimal strategies for the envisaged budget 
that maximise the creation of new jobs and the reduction of GHG emissions. We highlight that based on a 
provisional budget of €100-200 billion, about 230-432k new jobs can be created by 2025 and 50-233 MtCO2e can 
be cut by 2030 on top of a current policies scenario, which will bring the EU targets slightly closer with significant 
co-benefits. These results are mainly driven by investments in biofuels, wind, and biogas and in smaller amounts 
in geothermal energy. 

3.2 Methods 
On the basis of the multiple-uncertainty analysis framework proposed in Section 1, here we present a two-level 
integrated assessment and portfolio modelling study, to investigate how to best allocate part of the announced 
recovery plans in renewable energy technologies. The renewable energy portfolios are optimised with the aim to 
maximise reductions in emissions, while at the same time maximising employment gains in the energy sector.  

First, the GCAM model is run on top of a “Current Policies” (CP) scenario, as presented in PARIS REINFORCE 
Deliverable D7.4, meaning that results should be interpreted additionally to the established measures and targets. 
At this step, we retrieve GCAM outputs for different levels of subsidies in eight key technologies, including biofuels, 
biomass, CSP, geothermal, solar photovoltaics, electric vehicles, wind, and biogas, touching upon power 
generation, transport, buildings, etc. Given that the recovery and resilience funds have to be spent by 2024, it is 
assumed that the different subsidies are applied between 2021 and 2025 and affect the entire capital costs of the 
energy technologies, interpreting subsidy to lower initial investment costs. For GHGs, we calculate the cumulative 
emissions impacts from 2021 to 2030, abstracting GCAM results in 2030. We consider that green investments 
contribute to reducing emissions in the longer term, thereby extracting additional cumulative emissions reductions 
by 2030, while subsidies provided in 2021-2025 have an employment impact that is evident in the short-term 
(2025).  

To calculate the jobs created per technology subsidisation, we perform an extensive literature review to identify 
the number of jobs per energy of unit produced (depending on the technology). Based on the GCAM simulation, 
we can then calculate the net impact of jobs compared to the reference (CP) scenario depending on the increase 
or decrease in the demand for each technology. The assumptions used in the analysis are presented in Table 15. 

The jobs and energy produced (either TWh or TOE/kTOE) for Wind, PV, Biogas and Biofuels are directly drawn 
from EurObserverR (2020), which allowed us to calculate the jobs/unit of energy metric used in GCAM. For CSP, 
we focused on data from Spain for solar thermal energy, since most European CSP projects are located in Spain 
and the majority of solar thermal in the country refers to CSP. In that case, jobs are derived from EurObserver 
(2020) and energy data from IEA (2020), both of which corresponding to Spain. A similar approach was followed 
for geothermal energy, for which data for Italy were used since most of the EU geothermal production is in Italy.  

For biomass, natural gas, and coal, we reviewed the literature to identify the conversion method, capacity factor, 
and lifetime of plants from Wei et al. (2010) and employment factors for Construction, Manufacturing, and O&M 
from Fragkos and Paroussos (2018) and Rutovitz et al. (2015), and then calculate the “jobs per energy unit 
produced” metric required. For oil, lifetime information was not available; we used considered that coal, gas, and 
oil share similar lifetimes (40 years) (Papapostolou et al., 2017), thereby assuming that oil and gas share a similar 
level of jobs required to produce one unit of energy, as hinted in Fragkos and Paroussos (2018).  

A technology missing from the table yet examined in this study is electric vehicles (EVs): jobs associated with the 
labour-intensive charging infrastructure were not available at the moment of the analysis; the effect of EV subsidies 
on jobs is therefore only the net difference caused in the entire system due to the penetration of more EVs.  
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Table 15 Job Assumptions per technology 

 Jobs  
Electricity Production 

(TWh) 
Jobs/TWh Source 

Wind 179,062 377.4 861.9 (EurObserveR, 2020) 
PV 114,679.7 122.9 956.3 (EurObserveR, 2020) 

CSP 8,200 4.9 
1,683.8 (EurObserveR, 2020; 

IEA, 2020) 

Geothermal 2,200 6.1 
360.4 (EurObserveR, 2020; 

IEA, 2020) 

Biomass - - 

218.2 (Wei et al., 2010; 
Fragkos and 

Paroussos, 2018; 
Rutovitz et al., 2015) 

Nuclear 1,133,400 822.3 
1,378 (IEA, 2020; WNN, 

2019) 

Coal - - 

132.9 (Wei et al., 2010; 
Fragkos and 

Paroussos, 2018; 
Rutovitz et al., 2015) 

Oil - - 

59.3 (Wei et al., 2010; 
Fragkos and 

Paroussos, 2018; 
Rutovitz et al., 2015; 
Papapostolou et al., 

2017), 

Natural Gas - - 

59.3 (Wei et al., 2010; 
Fragkos and 

Paroussos, 2018; 
Rutovitz et al., 2015) 

Biogas 68,800 16,838.7 (kTOE) 
4.08  

(Jobs/kTOE) 
(EurObserveR, 2020) 

Biofuels 248,200 
16,658.2 (TOE of 
consumption for 

transport) 

14.9 
(Jobs/TOE of 
consumption 
for transport) 

(EurObserveR, 2020) 

 

On a simplified application of the methodology presented in Forouli et al. (2020), the outcomes of the GCAM 
analysis are fed into a portfolio optimisation model. The optimisation problem is modelled in GAMS and solved 
with the use of a bi-objective evaluation model for PA and of the AUGMECON-R method, as documented in 
Section 2. As stated above, the portfolios comprising any of eight renewable technologies (biofuels, biomass, CSP, 
geothermal, solar photovoltaics, electric vehicles, wind, and biogas) are evaluated based on their performance 
with regard to their contribution to the reduction of GHG emissions, and the positive consequences they may 
induce on jobs creation under different subsidy levels, forming two objecting functions:  
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maximise Z1 = ∑ ∑ �GHGredi,j ⋅ bi,j�              ∀i, jj=1i=1                                       (1) 
maximise Z2 = ∑ ∑ �JobsCreati,j ⋅ bi,j�           ∀i, jj=1i=1                                      (2) 

where: 

GHGredi,j: emission reduction achieved by the ith technology under budget option j 

JobsCreati,j: impact on employment achieved by the ith technology under budget option j 

i = 1, 2, … , 8 : for the eight renewable technologies examined 

j = 1, 2, … , 10 : for the ten levels of subsidisation considered, imposed as reduction in the initial investment costs 
of each technology 

bi,j: binary decision variable whose value is equal to 1, if the  ith technology under budget option j meets the 
criteria posed, and 0 otherwise. 

It is noted here that the objective functions’ coefficients, namely GHGredi,j and JobsCreati,j are calculated based on 

the outcomes of the GCAM model. 

To limit technology subsidisation into an amount consistent with the current EU policy, we trailed the proposed 
breakdown for the COVID recovery plan, looking at what part of the RRF could (theoretically at this point and prior 
to actual national requests expected by April 2021) be used for energy technology subsidies, and ended up with 
budgets between one and two hundred billion euros for the next five years. The reasoning behind these 
calculations is given in Section 3.1. Stemming from this analysis we selected three indicative budget levels within 
the range of one and two hundred billion (100, 150 and 200 billion Euros) as constraints for the portfolio 
optimisation and solved three optimisation problems, one for each budget constraint.  

As a last step, and to deal with the inherent uncertainty characterising the basic parameters of the model, namely 
GHG emissions reduction and jobs impact, a Monte Carlo simulation is carried out in a plus or minus 5% range for 
both parameters per subsidy package. The Monte Carlo simulation is executed iteratively 1,000 times for each of 
the three portfolio analysis configurations. By doing so, the robustness of the obtained optimal energy technology 
portfolios can be evaluated, considering that the uncertainty in the model’s parameters is of stochastic nature. 
More on the robustness evaluation approach used in this study can be found in Forouli et al. (2019a). 

3.3 Results and Discussion 
In the following, the optimal portfolios for the three assumed budgets are presented, also incorporating 
robustness information. The analysis shows that depending on the budget, the results change markedly in terms 
of portfolio mixes, but not substantially in terms of the qualitative synthesis.  

3.3.1 Portfolios with budget of €100 billion  

The final set of optimal portfolios is shown in Figure 16. The maximum impact on employment for the budget of 
€100 billion is 260 thousand jobs, while the best performance in emissions reduction is a reduction equal to 123 
MtCO2e. What is important to note here is how the technologies composing the optimal portfolios contribute to 
these goals. For that, we select two indicative portfolios, one that mainly contributes to emissions reductions (P1) 
and another with a higher potential for employment co-benefits (P2). The analysis shows that biofuels, wind, 
biogas, and geothermal subsidies dominate the portfolios. The decomposition of portfolios P1 and P2 also reveals 
the analysis’ dynamics and most active trade-offs, which are next validated also for the other considered budgets: 
biofuels-heavy mixes can push emissions further down compared to other technologies, while wind-based 
portfolios can make the most impact in terms of employment. 
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Figure 16: Optimal Portfolios and technologies participation (€100 billion) 

The results of the Monte Carlo simulations provide further insights into the participation of technologies among 
the optimal portfolios. In Figure 17, we see the levels of subsidisation that each technology achieves among 
multiple Monte Carlo iterations. We confirm that the most frequent technologies are wind, biogas, biofuels, and 
geothermal, though subsidisation in geothermal is in most cases limited. It is noted that in some cases within the 
uncertainty spectrum considered, a limited budget is also invested in CSP. Solar photovoltaics, electric vehicles, 
and biomass are absent from (virtually) all portfolios. The dominant subsidisation levels for the technologies with 
higher potential, namely wind, biofuels and biogas, are €56, €52 and €37 billion respectively.  

 
Figure 17: Technologies participation in the Monte Carlo simulations (€100 billion) 

The robustness analysis performed through the Monte Carlo simulations also leads to the updated final set of 
optimal portfolios, with the most robust portfolios illustrated with bubbles of greater size (Figure 18).  
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Figure 18: Pareto Front of robust portfolios (€100 billion) 

3.3.2 Portfolios with budget of €150 billion  

The final set of optimal portfolios is shown in Figure 19. The maximum impact on employment for the budget of 
€150 billion is 348 thousand jobs (a 34% increase compared to the €100 billion portfolios), while up to 160 MtCO2e 
emissions cuts are achieved, on top of the CP scenario (30% increase compared to the €100 billion portfolios).  
 

 
Figure 19: Optimal Portfolios and technologies participation (€150 billion) 

Delving into the contribution of the technologies within the optimal portfolios and notice that, as in the €100 
billion portfolios, biofuels, wind, biogas, and geothermal are again the dominant technologies. We highlight that, 
while we move towards a larger investment capacity, biogas breaks into the mix, essentially balancing portfolios, 
and biofuels keep maximising the emissions reductions potential. On the other end of the optimality front 
(portfolio P2), we observe that wind not only drastically improves the employment benefits of a 150-billion-euro 
subsidy, but as the Monte Carlo analysis indicates (Figure 21) it also makes up the most robust portfolios against 
uncertainties. 
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Figure 20: Technologies participation in the Monte Carlo simulations (€150 billion) 

The results of the Monte Carlo simulations confirm again that the most robust technologies to subsidise are wind, 
biogas, biofuels, and geothermal energy. Wind and biogas are in most cases highly subsidised with investments 
from EUR 56 to 107 billion and EUR 37 to 115 billion, respectively. The different levels of subsidisation among 
these two technologies lead to a trade-off between emissions cuts (emphasised in case of biogas) and number of 
new jobs (higher in case of wind). The lower threshold to invest in biofuels is normally circa 50 billion. In the 
absence of investments in biofuels, the budget is distributed to wind and biogas to balance the two criteria. 
Subsidisation in geothermal energy is normally low, €1-10 billion depending on the investment mix of the main 
technologies, but this can be a reasonable investment that can yield to up to 1,500 new jobs; it is noteworthy that 
these small budget packages examined for geothermal energy partly reflect the overall potential of the source in 
the EU. CSP subsidies sometimes appear as complementary investments, across the uncertainty perturbations. 
Additional subsidies in photovoltaics and EVs on top of the current policies are neither here recommended. 

The updated final set of optimal portfolios after the incorporation of robustness information is shown in the 
following figure.  
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Figure 21: Pareto Front of robust portfolios (€150 billion) 

3.3.3 Portfolios with budget of €200 billion  

The final set of optimal portfolios is shown in Figure 22. The maximum impact on employment for the budget of 
€200 billion is 432 thousand jobs (24% increase compared to the €150 billion portfolios), while the largest potential 
of emissions reductions equals to 237 Mt CO2e (48% increase compared to the €150 billion portfolios).  

 
Figure 22: Optimal Portfolios and technologies participation (€200 billion) 

As depicted in Figures 22 and 23, the main difference of the 200 billion-euro solution from the previous analyses 
is a larger investment in biofuels. This leads to solutions that achieve high emissions cuts and simultaneously 
create many new jobs in the entire energy sector, as the case is in portfolio P1. Biofuels are normally subsidised 
with up to €153 billion, while the most common investments in biogas are €37 billion and in wind €22 billion, 
which is a significant reduction compared to the high levels of subsidisation achieved by these technologies in the 
100 and 150 billion-euro solutions. The remaining budget is allocated to geothermal energy and CSP and just in 
three portfolios in solid biomass.  
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Figure 23: Technologies participation in the Monte Carlo simulations (€200 billion) 

The updated, robust, set of optimal portfolios is given in the following figure.  

 
Figure 24: Pareto Front of robust portfolios (€200 billion) 

In contrast to the robustness analysis results of 100 and 150 billion-euro portfolios, where wind intensive portfolios 
exhibited the higher level of robustness, the 200-billion-euro portfolio analysis shows that large investments in 
biofuels are the least sensitive way forward in terms of uncertainty perturbation. This could be partly attributed to 
the non-linearity of the budgets considered. 

3.3.4 Discussion 

The purpose of this study was to examine what would the benefits be in terms of jobs created and additional 
emissions reductions if the EU budget pledged for the economic recovery from the impact of COVID-19 was 
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largely used to fund subsidies for expanding renewable energy. The results should be interpreted as additional to 
the existing low-carbon measures and targets established.  

The core finding of this study is that 100-to-200-billion-euro subsidies could achieve a further up-to-1% CO2 
emissions cuts. This may sound small, but at the same time such a strategy can create 230-432 thousand jobs in 
the energy sector, supporting the COVID-impacted employment as a side-effect of the green transition. It is also 
noteworthy that 2030 is the first year in the model that emissions impact of the subsidies is reflected, so a single-
year or post-2030 comparison may reflect larger benefits. The main caveat is that this is still based on one of the 
many models of PARIS REINFORCE, so this is very much work in progress; but a first read of the modelling 
dynamics showed that we can in fact gain financially on these investments, in terms of pushing down costs of 
existing policies. 

From a technological point of view, we can see that biofuels, wind, and biogas appear overall optimal, when 
considering both criteria, and that uncertainty plays out quite differently in terms of robust portfolio synthesis. 
Main caveats in this respect are the non-linearities in the budgets assumed in the analysis, as well as that the 
employment co-benefits for certain technologies do not capture the entire picture, with electric vehicles being the 
most prominent example: impacts of EV subsidies only trail net job changes throughout the entire energy sector, 
without accounting for associated labour-intensive activities like charging infrastructure. As a result, electric 
vehicles appear to lead to further emissions cuts, but these are expensive, and their employment impact is virtually 
negligible. We can also see that geothermal, for which smaller subsidy packages are considered to reflect the 
current potential in Europe (by proxy of the annualised costs of the technology in GCAM), is not that competitive 
compared to the three other optimal technologies. Nevertheless, it manages to break into all near-optimal 
solutions due to its low cost and positive impacts along both axes. What was very interesting also was that solar 
power appears to reach its tipping point in the base scenario, in the sense that there is already high penetration 
of photovoltaics in the electricity mix under a current policies scenario, meaning that additional subsidies seem to 
increase the resulting emissions (pointing to the need for gas to balance the grid load). 

Furthermore, it is evident that the current policies already do a fine job in reducing emissions in the power sector 
(with the ETS and dropping capital costs), but this is not entirely true for other sectors (e.g. transport and buildings), 
in which subsidies turn out more cost-effective. 

Clearly, emphasising emissions reductions by prioritising for example subsidies in biofuels, could possibly lead to 
some Land Use Change emissions outside the EU, especially in countries that are strong biofuel producers (e.g. 
USA, Brazil, Argentina, China; see PARIS REINFORCE Deliverable D4.1), which could also be why, for the same 
subsidies in GCAM, we see opposite-leaning impacts globally.  

Next steps include extending the analysis to the broader modelling ensemble of PARIS REINFORCE, as well as 
adding more objectives, such as industrial value added, health co-benefits, etc.), and enhancing the level of detail 
in direct and indirect employment factors (including EVs). Furthermore, it will be useful to wait for the final RRF, in 
terms of investment capacity in subsidies (as finalised by the national recovery and resilience plans and financing 
requests to be submitted by April 2021), before examining the climate-employment co-benefits at both (EU- and 
Member State-) levels. 

3.4 Key takeaways 
The pandemic has had a significant impact on the European economy, with approximately 1.8 million EU citizens 
losing their jobs between September 2019 and September 2020. Towards facilitating a recovery, the EU launched 
the Recovery and Resilience Facility (RRF) to provide €672.5 billion of financial support to Member States in the 
coming years. In line with the European Green Deal and climate efforts, 37% of investments in national plans 
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requesting RRF financing must focus on a “green” transition. Integrated within the first PARIS REINFORCE model 
inter-comparison scenario logic of exploring “where the world is headed” based on current policies and pledges, 
we seek the optimal allocation of renewable energy subsidies from the COVID-19 recovery package in the EU. 
Towards further mitigating emissions and creating new jobs in the green transition, on top of a current policies 
scenario, we use budgets aligned with announced plans, and couple integrated assessment modelling with a 
technological portfolio analysis. We find that, for a €100-200 billion investment budget in 2021-2025, about 230-
432k new jobs can be created by 2025 in the energy sector. The support package could also bring the EU (only 
slightly) closer to the new 2030 climate target: 50-233 MtCO2e can be cut by 2030, corresponding to a 0.2-1% 
drop further down from the current policies scenario. Biofuels, wind, and biogas appear to be the most optimal 
technologies to subsidise against the two criteria, with small geothermal investments complementing portfolios. 
As solar energy already reaches high levels of penetration in a current policies scenario, additional subsidies push 
emissions higher due to increasing gas use for balancing grid load, while electric vehicles display expensive 
emissions cuts for negligible new jobs. Wind-based portfolios prioritising employment gains appear more robust 
against uncertainties; this shifts in favour of biofuels if larger investment capacity is assumed, maximising 
emissions reductions. 
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Appendix A: Source code of AUGMECON-R 
Set 
   I 'constraints'         / i1* i4 / 
   J 'decision variables'  / j1*j40 / 
   K 'objective functions' / k1* k4 / 
   ; 
 
Parameter 
   dir(k) 'direction of the objective functions 1 for max and -1 for min' / k1 1, 
k2 1, k3 1, k4 1  / 
   b(I)   'RHS of the constraints' /   i1 1570, i2 1210 , i3 1355, i4 1035/; 
 
Table c(J,K) 'matrix of objective function coefficients C' 
           k1        k2        k3        k4 
j1         7         22        17        5 
j2         13        10        11        25 
j3         16        20        5         8 
j4         19        20        11        18 
j5         24        20        3         20 
j6         24        3         7         10 
j7         23        24        4         7 
j8         6         7         19        20 
j9         5         24        8         17 
j10        20        16        8         11 
j11        10        24        3         10 
j12        7         14        7         15 
j13        23        20        9         2 
j14        3         8         15        20 
j15        7         3         16        23 
j16        20        19        19        18 
j17        9         10        10        10 
j18        13        4         12        5 
j19        20        2         12        4 
j20        18        17        13        11 
j21        17        10        12        23 
j22        6         10        7         24 
j23        7         15        19        8 
j24        10        7         11        15 
j25        11        12        24        12 
j26        5         7         22        8 
j27        22        10        5         3 
j28        16        17        21        21 
j29        16        7         13        16 
j30        3         10        14        5 
j31        8         23        24        11 
j32        3         11        4         19 
j33        20        10        5         2 
j34        18        15        7         9 
j35        10        4         5         19 
j36        22        9         8         21 
j37        6         19        13        8 
j38        20        10        10        3 
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j39        12        24        17        6 
j40        11        24        16        21 
 
 
 
 
  ; 
 
Table a(J,I) 'matrix of technological coefficients A' 
           i1         i2         i3         i4 
j1         78         59         53         76 
j2         94         67         75         51 
j3         97         88         117        88 
j4         116        107        101        102 
j5         50         65         77         90 
j6         62         77         88         114 
j7         66         93         52         107 
j8         110        89         64         94 
j9         63         107        118        57 
j10        59         110        87         71 
j11        118        95         66         58 
j12        104        77         101        114 
j13        117        111        116        106 
j14        120        97         105        94 
j15        65         100        65         109 
j16        102        95         97         73 
j17        100        69         84         81 
j18        97         99         55         77 
j19        61         66         99         53 
j20        102        113        103        85 
j21        71         89         115        71 
j22        86         73         91         99 
j23        53         85         98         56 
j24        110        88         64         84 
j25        58         84         113        101 
j26        87         58         60         50 
j27        69         76         83         69 
j28        69         79         111        83 
j29        71         96         81        113 
j30        83         75         64         94 
j31        85         112        110        84 
j32        88         81         80         75 
j33        109        63         61         71 
j34        115        103        56         80 
j35        106        112        69         105 
j36        95         68         75         76 
j37        98         71         71         83 
j38        87         52         52         80 
j39        102        94         109        54 
j40        56         107        63         101 
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   ; 
 
Variable 
   Z(K) 'objective function variables' 
   X(J) 'decision variables'; 
 
Binary Variable X; 
 
 
 
Equations 
   objfun(K)    objective functions 
   con(I)    constraints 
; 
 
objfun(K).. sum(J,c(J,K)*X(J)) =e= Z(K); 
con(I).. sum(J, a(J,I)*X(J)) =l= b(I); 
 
Model example / all /; 
 
$STitle eps-constraint method 
 
Set k1(k) the first element of k, km1(k) all but the first elements of k; 
k1(k)$(ord(k)=1) = yes; km1(k)=yes; km1(k1) = no; 
Set kk(k)     active objective function in constraint allobj  ; 
 
Parameter 
   rhs(k)     right hand side of the constrained obj functions in eps-constraint 
   maxobj(k)  maximum value from the payoff table 
   minobj(k)  minimum value from the payoff table 
   numk(k) ordinal value of k starting with 1 
   range(k) maxobj-minobj   ; 
 
Scalar 
iter   total number of iterations 
infeas total number of infeasibilities 
elapsed_time elapsed time for payoff and e-sonstraint 
start start time 
finish finish time      ; 
 
Variables 
   a_objval   auxiliary variable for the objective function 
   obj        auxiliary variable during the construction of the payoff table ; 
Positive Variables 
   sl(k)      slack or surplus variables for the eps-constraints   ; 
Equations 
   con_obj(k) constrained objective functions 
   augm_obj   augmented objective function to avoid weakly efficient solutions 
   allobj     all the objective functions in one expression; 
 
con_obj(km1)..   z(km1) - dir(km1)*sl(km1) =e= rhs(km1); 
 
* We optimize the first objective function and put the others as constraints 
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* the second term is for avoiding weakly efficient points 
 
* objfun=max z1 + 0.001*(s1/r1+0.1 s2/r2+ 0.01*s3/r3+...) 
augm_obj.. 
  sum(k1,dir(k1)*z(k1))+1.0e-3*sum(km1,power(10,-(numk(km1)-
1))*sl(km1)/(maxobj(km1)-minobj(km1))) =e= a_objval; 
 
allobj..  sum(kk, dir(kk)*z(kk)) =e= obj; 
 
Model mod_payoff    / example, allobj / ; 
Model mod_epsmethod / example, con_obj, augm_obj / ; 
 
Parameter 
  payoff(k,k)  payoff tables entries; 
Alias(k,kp); 
 
option optcr=0.0; 
option limrow=0, limcol=0, solprint=off, solveLink = %solveLink.LoadLibrary% ; 
$offlisting; 
$offsymxref; 
$offsymlist; 
$offuelxref; 
$offuellist; 
*,solveLink = %solveLink.LoadLibrary% 
*file cplexopt /cplex.opt/; 
*put cplexopt; 
*put 'threads 4'/; 
*put 'parallelmode 1'/; 
*putclose cplexopt; 
*mod_epsmethod.optfile=1; 
*option optca=0.; 
*mod_payoff.optfile=1; 
*mod_epsmethod.optfile=1; 
 
* Generate payoff table applying lexicographic optimization 
loop(kp, 
  kk(kp)=yes; 
  repeat 
    solve mod_payoff using mip maximizing obj; 
    payoff(kp,kk) = z.l(kk); 
    z.fx(kk) = z.l(kk); 
    kk(k++1) = kk(k); 
  until kk(kp); kk(kp) = no; 
* release the fixed values of the objective functions for the new iteration 
  z.up(k) = inf; z.lo(k) =-inf; 
); 
if (mod_payoff.modelstat<>1 and mod_payoff.modelstat<>8, abort 'no optimal 
solution for mod_payoff'); 
 
File fx  / 4kp40_uncorrelated_nadir.txt /; 
 
PUT fx ' PAYOFF TABLE'/   ; 
loop (kp, 
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        loop(k, put payoff(kp,k):12:2); 
        put /; 
     ); 
put fx /; 
 
*display payoff; 
*minobj(k)=smin(kp,payoff(kp,k)); 
**$ontext 
*Ideally minobj(k) could be set to zero value minobj(k)=0; 
minobj(k)=floor(0.088*smin(kp,payoff(kp,k))); 
maxobj(k)=smax(kp,payoff(kp,k)); 
range(k)=(maxobj(k)-minobj(k)); 
*$ontext 
*$set fname h.%scrext.dat% 
 
*gridpoints=max integer of km1 
 
$if not set gridpoints_1  $set gridpoints_1 1000 
$if not set gridpoints_2  $set gridpoints_2 1000 
$if not set gridpoints_3  $set gridpoints_3 1000 
*Generally speaking gridpoints are set to a very large value 
Set g grid points /g0*g%gridpoints%/ 
    grid(k,g) 'grid ' 
    q    /q0*q%gridpoints_1%/ 
    r     /r0*r%gridpoints_2%/ 
    s    /s0*s%gridpoints_3%/ 
 
 
   ; 
 
 
Parameter 
    gridrhs(k,g) 
    maxg(k) maximum point in grid for objective 
    posg(k) grid position of objective 
    firstOffMax, lastZero, current1, current2, current3,  synthiki, b2, b3, b4, 
terminal1, terminal2, terminal3, control1, control2, range1, range2, range3 some 
counters 
*    numk(k) ordinal value of k starting with 1 
    numg(g) 'ordinal value of g starting with 0  ' 
    step(k) step of grid points in objective functions 
    jump(k) jumps in the grid points' traversing only for the first objective 
function 
    numq(q)  ordinal value of q starting with zero 
    numr(r)  ordinal value of r starting with zero 
    nums(s)  ordinal value of s starting with zero 
    flag(q,r,s) memory matrix 
 
 
; 
 
 
 lastZero=1; loop(km1, numk(km1)=lastZero; lastZero=lastZero+1); numg(g) = ord(g)-
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1; 
 numq(q) = ord(q)-1; 
 numr(r) = ord(r)-1; 
 nums(s) = ord(s)-1; 
 range1=sum(k$(ord(k)=2),range(k)); 
 range2=sum(k$(ord(k)=3),range(k)); 
 range3=sum(k$(ord(k)=4),range(k)); 
 
loop(q$(numq(q)<range1+1), 
       loop(r$(numr(r)<range2+1), 
            loop(s$(nums(s)<range3+1), flag(q,r,s)=0););); 
 
 
 
grid(km1,g) = yes; 
maxg(k)=range(k); 
step(km1)   = 1 ; 
gridrhs(grid(km1,g))$(dir(km1)=-1) = maxobj(km1) - numg(g)/maxg(km1)*(maxobj(km1)- 
minobj(km1)); 
gridrhs(grid(km1,g))$(dir(km1)=1) = minobj(km1) + numg(g)*step(km1); 
*display gridrhs; 
 
*PUT fx ' Grid points'/   ; 
*loop (g, 
*       loop(km1, put gridrhs(km1,g):12:2); 
*        put /; 
*     ); 
put fx /; 
put fx 'Efficient solutions'/; 
 
* Walk the grid points and take shortcuts if the model becomes infeasible 
posg(km1) = 0; 
 
iter=0; 
infeas=0; 
terminal1=0; 
terminal2=0; 
terminal3=0; 
terminal1=sum(km1$(numk(km1)=1),maxg(km1)); 
terminal2=sum(km1$(numk(km1)=2),maxg(km1)); 
terminal3=sum(km1$(numk(km1)=3),maxg(km1)); 
synthiki=0; 
control1=0; 
start=jnow; 
 
 
repeat 
  rhs(km1) = sum(grid(km1,g)$(numg(g)=posg(km1)), gridrhs(km1,g)); 
  current1=0; 
  current2=0; 
  current3=0; 
  current1=sum(km1$(numk(km1)=1),posg(km1))  ; 
  current2=sum(km1$(numk(km1)=2),posg(km1))  ; 
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  current3=sum(km1$(numk(km1)=3),posg(km1))  ; 
 loop(q$(numq(q)=current1), 
      loop(r$(numr(r)=current2), 
         loop(s$(nums(s)=current3), synthiki=flag(q,r,s)););); 
  if(synthiki=0,  solve mod_epsmethod maximizing a_objval using mip); 
  iter=iter+1; 
  if (synthiki=0 and mod_epsmethod.modelstat<>1 and mod_epsmethod.modelstat<>8, 
    infeas=infeas+1; 
    put fx iter:5:0, '  infeasible'/; 
    lastZero = 0; loop(km1$(posg(km1)>0 and lastZero=0), lastZero=numk(km1)); 
    posg(km1)$(numk(km1)<=lastZero) = maxg(km1); 
       loop(s$(nums(s)>=current3 and nums(s)<=terminal3), 
           loop(r$(numr(r)>=current2 and numr(r)<=terminal2), 
               loop(q$(numq(q)=current1), flag(q,r,s)=terminal1-current1+1););); 
 
 
  else if(synthiki=0 , 
    put fx iter:5:0; 
    loop(k, put fx z.l(k):12:2); 
    put fx ' *** '; 
    loop(km1, put fx sl.l(km1):12:2, put fx posg(km1):6:0); 
    put fx ' *** '; 
   loop(km1$(numk(km1)=1),b2=floor(sl.l(km1)/step(km1))); 
   loop(km1$(numk(km1)=2),b3=floor(sl.l(km1)/step(km1))); 
   loop(km1$(numk(km1)=3),b4=floor(sl.l(km1)/step(km1))); 
        loop(s$(nums(s)>=current3 and nums(s)<=current3+b4), 
              loop(r$(numr(r)>=current2 and numr(r)<=current2+b3), 
                   loop(q$(numq(q)=current1) ,   flag(q,r,s)=b2+1););); 
 
 
     jump(km1)=1; 
 
* calculate only for the first constrained objective function jump(km1) 
    put fx ' * '; 
*    loop(km1$(numk(km1)=1), jump(km1)=1+floor(sl.L(km1)/step(km1))); 
    jump(km1)$(numk(km1)=1)=1+floor(sl.L(km1)/step(km1)); 
    loop(km1, put fx jump(km1):5:0) ; 
    loop(km1$(jump(km1)> 1),  put '   jump') 
    put /; 
    ); 
   ); 
 
 
 jump(km1)$(numk(km1)>1)=1 ; 
* Proceed forward in the grid 
  control1=0; 
  firstOffMax = 0; 
  loop(km1$(posg(km1)<maxg(km1) and firstOffMax=0 and numk(km1)=1 and 
synthiki>0),control2=posg(km1)+synthiki; 
posg(km1)=min(posg(km1)+synthiki,maxg(km1)); firstOffMax=numk(km1) ); 
  loop(km1$(posg(km1)=maxg(km1) and numk(km1)=1 and synthiki>0 and firstOffMax>0 
and control2>maxg(km1)), control1=1); 
  loop(km1$(posg(km1)<maxg(km1) and firstOffMax=0 and numk(km1)=1 and synthiki=0), 
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posg(km1)=min((posg(km1)+jump(km1)),maxg(km1)); firstOffMax=numk(km1)); 
  loop(km1$(posg(km1)<maxg(km1) and firstOffMax=0 and numk(km1)>1), 
posg(km1)=min((posg(km1)+jump(km1)),maxg(km1)); firstOffMax=numk(km1)); 
 
 
   loop(km1$(posg(km1)<maxg(km1) and control1>0 and numk(km1)>1 ), 
posg(km1)=min((posg(km1)+jump(km1)),maxg(km1)); firstOffMax=numk(km1); 
control1=0); 
 
                       posg(km1)$(numk(km1)<firstOffMax) = 0  ; 
 
until sum(km1$(posg(km1)=maxg(km1)),1)= card(km1) and firstOffMax=0; 
 
finish=jnow; 
elapsed_time=(finish-start)*86400; 
 
put /; 
put 'Infeasibilities = ', infeas:5:0 /; 
put 'Elapsed time: ',elapsed_time:10:2, ' seconds' / ; 
*$offtext 
putclose fx; 
**$offtext 
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Appendix B: Datasets used for the complex problems 

B.1 Dataset of the 4kp40 problem 
Table c(J,K) 'matrix of objective function coefficients C' 

           k2        k4        k3        k1 

j1         7         22        17        5 

j2         13        10        11        25 

j3         16        20        5         8 

j4         19        20        11        18 

j5         24        20        3         20 

j6         24        3         7         10 

j7         23        24        4         7 

j8         6         7         19        20 

j9         5         24        8         17 

j10        20        16        8         11 

j11        10        24        3         10 

j12        7         14        7         15 

j13        23        20        9         2 

j14        3         8         15        20 

j15        7         3         16        23 

j16        20        19        19        18 

j17        9         10        10        10 

j18        13        4         12        5 

j19        20        2         12        4 

j20        18        17        13        11 

j21        17        10        12        23 

j22        6         10        7         24 

j23        7         15        19        8 

j24        10        7         11        15 

j25        11        12        24        12 

j26        5         7         22        8 

j27        22        10        5         3 

j28        16        17        21        21 

j29        16        7         13        16 

j30        3         10        14        5 

j31        8         23        24        11 

j32        3         11        4         19 

j33        20        10        5         2 

j34        18        15        7         9 

j35        10        4         5         19 
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j36        22        9         8         21 

j37        6         19        13        8 

j38        20        10        10        3 

j39        12        24        17        6 

j40        11        24        16        21 

 

Table a(J,I) 'matrix of constraint coefficients A' 

           i1         i2         i3         i4 

j1         78         59         53         76 

j2         94         67         75         51 

j3         97         88         117        88 

j4         116        107        101        102 

j5         50         65         77         90 

j6         62         77         88         114 

j7         66         93         52         107 

j8         110        89         64         94 

j9         63         107        118        57 

j10        59         110        87         71 

j11        118        95         66         58 

j12        104        77         101        114 

j13        117        111        116        106 

j14        120        97         105        94 

j15        65         100        65         109 

j16        102        95         97         73 

j17        100        69         84         81 

j18        97         99         55         77 

j19        61         66         99         53 

j20        102        113        103        85 

j21        71         89         115        71 

j22        86         73         91         99 

j23        53         85         98         56 

j24        110        88         64         84 

j25        58         84         113        101 

j26        87         58         60         50 

j27        69         76         83         69 

j28        69         79         111        83 

j29        71         96         81        113 

j30        83         75         64         94 

j31        85         112        110        84 

j32        88         81         80         75 



The PARIS REINFORCE project has received funding from the 
European Union’s Horizon 2020 Research and Innovation 
Programme under grant agreement No 820846. 

 
 

 

                  

D4.2 First portfolio analysis of technological and policy mixes 

                                                                                                                                               
Page 81 of 88 

 

j33        109        63         61         71 

j34        115        103        56         80 

j35        106        112        69         105 

j36        95         68         75         76 

j37        98         71         71         83 

j38        87         52         52         80 

j39        102        94         109        54 

j40        56         107        63         101  

 

B.2 Dataset of the 4kp50 binary problem 
Table c(J,K) 'matrix of objective function coefficients C' 

           k1        k3        k2        k4 

j1         68        65        65        66 

j2         66        50        63        69 

j3         59        53        57        62 

j4         55        68        69        68 

j5         57        51        58        60 

j6         67        56        63        70 

j7         55        62        53        56 

j8         54        64        53        59 

j9         57        67        59        65 

j10        64        50        62        66 

j11        68        59        58        54 

j12        62        70        69        50 

j13        53        60        67        65 

j14        70        62        60        58 

j15        52        64        51        63 

j16        55        64        53        53 

j17        64        56        61        53 

j18        52        61        57        57 

j19        65        63        70        57 

j20        57        69        63        67 

j21        61        56        57        61 

j22        54        68        61        59 

j23        50        64        52        68 

j24        57        67        64        52 

j25        57        65        57        57 

j26        58        67        66        58 

j27        63        64        60        57 
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j28        55        69        70        64 

j29        64        69        63        53 

j30        67        60        55        55 

j31        68        69        60        67 

j32        63        69        66        60 

j33        57        62        67        62 

j34        67        57        67        56 

j35        67        58        68        56 

j36        68        56        52        60 

j37        56        65        70        68 

j38        52        69        52        59 

j39        54        62        51        52 

j40        55        69        64        69 

j41        50        52        64        57 

j42        63        63        62        69 

j43        67        54        68        61 

j44        68        64        57        61 

j45        58        67        57        53 

j46        52        52        67        53 

j47        63        62        55        60 

j48        53        53        65        63 

j49        52        54        53        69 

j50        67        67        58        66 

 

 

Table a(J,I) 'matrix of constraint coefficients A' 

          i1        i2       i3       i4 

j1         0        1        0        0 

j2         1        1        1        1 

j3         1        0        1        1 

j4         0        0        1        1 

j5         1        1        0        1 

j6         0        0        0        0 

j7         1        1        1        0 

j8         1        1        0        0 

j9         1        0        1        1 

j10        0        1        0        1 

j11        1        0        1        1 

j12        1        0        0        0 

j13        0        0        0        1 
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j14        1        1        0        0 

j15        1        0        1        0 

j16        1        0        0        1 

j17        1        1        1        1 

j18        1        0        1        1 

j19        0        1        1        0 

j20        1        1        0        0 

j21        0        1        1        0 

j22        1        1        0        1 

j23        1        0        1        0 

j24        0        0        0        0 

j25        1        1        0        1 

j26        0        1        1        1 

j27        1        1        1        1 

j28        1        1        0        1 

j29        1        1        0        1 

j30        1        1        0        0 

j31        0        0        1        1 

j32        1        0        1        1 

j33        1        1        0        0 

j34        0        0        0        1 

j35        0        0        0        1 

j36        1        1        1        1 

j37        1        0        0        1 

j38        1        1        1        0 

j39        0        0        0        1 

j40        1        0        0        1 

j41        1        1        0        0 

j42        0        0        1        1 

j43        1        1        1        1 

j44        1        1        1        0 

j45        1        1        1        0 

j46        1        1        1        1 

j47        0        0        0        0 

j48        1        1        1        1 

j49        1        1        0        0 

j50        0        0        1        0 
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B.3 Dataset of the 5kp40 binary problem 
Table c(J,K) 'matrix of objective function coefficients C' 

           k1       k2       k3       k4       k5 

j1         3        10       4        9        10 

j2         5        4        8        9        4 

j3         5        5        6        6        7 

j4         5        3        3        4        5 

j5         8        2        2        9        7 

j6         5        5        9        6        4 

j7         9        5        3        6        7 

j8         4        3        3        6        2 

j9         4        2        8        3        4 

j10        3        9        7        5        7 

j11        7        9        8        5        9 

j12        8        3        5        4        3 

j13        6        9        7        6        9 

j14        8        7        9        5        4 

j15        4        5        4        6        6 

j16        5        2        8        3        8 

j17        5        5        6        5        2 

j18        5        2        5        5        3 

j19        3        7        5        8        7 

j20        3        7        4        6        5 

j21        9        5        10       6        3 

j22        5        7        8        10       4 

j23        9        7        8        6        9 

j24        4        8        4        4        2 

j25        4        4        10       7        4 

j26        5        3        5        8        7 

j27        2        7        4        5        6 

j28        7        6        5        6        7 

j29        9        6        9        8        3 

j30        9        3        8        4        7 

j31        3        8        10       4        10 

j32        9        9        5        10       9 

j33        5        3        7        5        3 

j34        5        6        7        4        7 

j35        7        6        7        4        8 

j36        3        9        3        8        4 

j37        8        2        7        4        4 
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j38        5        7        7        3        9 

j39        8        10       9        8        5 

j40        8        4        8        10       7 

 

Table a(J,I) 'matrix of constraint coefficients A' 

           i1         i2         i3         i4         i5 

j1         285        153        237        204        217 

j2         308        192        345        162        289 

j3         124        150        72         154        298 

j4         131        262        227        299        370 

j5         290        130        245        255        155 

j6         315        71         134        270        253 

j7         101        179        359        213        325 

j8         323        52         57         189        398 

j9         252        244        186        146        358 

j10        232        389        324        232        155 

j11        370        382        220        270        194 

j12        232        79         202        284        184 

j13        265        183        199        277        146 

j14        355        62         60         79         344 

j15        141        80         161        68         208 

j16        163        174        139        135        286 

j17        152        371        215        208        148 

j18        346        192        130        389        225 

j19        397        305        386        124        143 

j20        135        299        107        248        259 

j21        305        178        303        121        239 

j22        201        357        138        145        190 

j23        75         234        155        212        156 

j24        369        350        318        102        94 

j25        390        109        276        287        300 

j26        115        260        263        79         368 

j27        378        66         226        116        150 

j28        80         146        349        197        65 

j29        380        144        323        266        385 

j30        386        265        389        238        286 

j31        63         148        98         245        235 

j32        324        208        334        101        347 

j33        163        251        399        85         222 

j34        152        131        95         252        189 
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j35        94         341        125        250        215 

j36        360        297        164        361        199 

j37        111        140        135        195        240 

j38        290        337        316        151        53 

j39        187        305        185        238        352 

j40        272        159        74         269        186 

 

B.4 Dataset of the 6kp50 binary problem 
Table c(J,K) 'matrix of objective function coefficients C' 

          k1        k2       k3       k4       k5       k6 

j1         2        2        5        3        0        1 

j2         5        3        3        4        4        3 

j3         0        3        0        1        0        2 

j4         0        2        1        3        5        4 

j5         5        4        5        4        3        4 

j6         4        3        1        4        5        5 

j7         2        0        1        3        3        5 

j8         3        1        4        1        0        2 

j9         2        2        2        1        5        5 

j10        0        5        3        0        1        4 

j11        1        4        4        3        1        2 

j12        2        0        1        0        5        4 

j13        5        4        1        2        1        3 

j14        2        0        4        2        3        3 

j15        1        4        2        4        1        2 

j16        4        1        3        1        4        2 

j17        2        1        2        4        4        2 

j18        0        4        2        4        4        4 

j19        4        4        3        3        0        4 

j20        3        2        0        0        2        3 

j21        1        3        2        5        1        1 

j22        3        1        2        3        0        1 

j23        4        1        1        3        0        1 

j24        4        4        3        5        1        0 

j25        4        5        4        2        4        2 

j26        4        3        4        0        4        4 

j27        1        4        1        3        1        2 

j28        3        4        0        0        2        4 

j29        2        4        1        0        4        1 
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j30        3        2        3        3        5        1 

j31        5        4        0        2        4        0 

j32        4        4        3        4        0        1 

j33        3        2        1        2        5        2 

j34        0        3        5        0        3        2 

j35        3        1        4        3        3        1 

j36        4        4        2        2        3        1 

j37        2        2        1        3        1        2 

j38        2        4        2        5        1        3 

j39        5        5        3        0        4        1 

j40        0        2        5        2        1        3 

j41        4        0        5        1        1        3 

j42        3        2        5        2        4        3 

j43        4        2        4        5        4        5 

j44        3        4        4        3        3        0 

j45        1        4        2        4        3        3 

j46        3        4        1        5        2        2 

j47        1        3        2        2        5        2 

j48        4        4        4        3        3        0 

j49        1        1        4        3        4        2 

j50        1        3        2        3        3        5 

 

Table a(J,I) 'matrix of constraint coefficients A' 

          i1        i2       i3       i4       i5       i6 

j1         1        0        0        0        0        1 

j2         0        1        1        0        0        1 

j3         0        0        0        1        1        0 

j4         1        1        0        0        1        1 

j5         0        0        1        0        1        1 

j6         1        1        1        1        0        0 

j7         1        1        0        1        0        1 

j8         0        1        0        1        0        1 

j9         1        1        1        0        0        1 

j10        0        0        1        1        0        0 

j11        0        0        0        1        0        1 

j12        0        1        1        1        1        0 

j13        1        0        0        1        1        1 

j14        1        1        1        0        1        1 

j15        0        1        1        0        1        1 

j16        0        1        1        1        1        0 
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j17        0        0        1        0        0        1 

j18        0        1        1        0        0        0 

j19        0        1        1        0        1        0 

j20        0        0        0        1        0        1 

j21        0        0        0        1        1        0 

j22        0        0        0        1        0        1 

j23        1        0        1        0        0        1 

j24        0        0        0        0        1        0 

j25        1        0        1        0        0        0 

j26        0        0        1        0        0        1 

j27        0        0        1        1        0        1 

j28        0        1        1        1        1        1 

j29        0        0        1        1        0        1 

j30        0        0        0        1        1        1 

j31        1        1        0        1        1        1 

j32        1        0        1        1        1        0 

j33        0        0        1        0        1        1 

j34        1        0        1        1        1        1 

j35        1        0        0        1        1        0 

j36        0        0        1        1        0        0 

j37        1        0        0        0        1        0 

j38        0        1        1        0        1        0 

j39        0        0        1        1        0        0 

j40        0        0        0        1        0        0 

j41        1        0        1        1        0        0 

j42        1        0        0        1        0        1 

j43        0        0        0        0        1        1 

j44        1        1        0        0        0        1 

j45        0        0        0        1        0        1 

j46        1        0        1        1        0        1 

j47        1        1        1        0        1        0 

j48        0        1        1        1        1        0 

j49        1        0        1        0        0        0 

j50        0        1        1        0        1        0 
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